Bits, Bytes, and Integers

Spring, 2013
Euiseong Seo
(euiseong@skku.edu)

This Powerpoint slides are modified from its original version available at http://www.cs.cmu.edu/afs/cs/academic/class/15213-s09/www/lectures/ppt-sources/
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Binary Representations
Encoding Byte Values

- **Byte = 8 bits**
 - Binary 00000000_2 to 11111111_2
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B_{16} in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex / Decimal / Binary Table

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Programs refer to virtual addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + run-time system control allocation

- Where different program objects should be stored
- All allocation within single virtual address space
Machine has “Word Size”

- Nominal size of integer-valued data
 - Including addresses
- Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 10^{19} bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Addresses specify byte locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data Sizes

- Computer and compiler support multiple data formats
 - Using different ways to encode data
 - Integers and floating point
 - Using different lengths
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

A multi-byte object is stored as a contiguous sequence of bytes
 - With a address of the object given by the smallest address of the bytes

How should bytes within a multi-byte word be ordered in memory?

Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address
Byte Ordering Example

- **Big Endian**
 - Least significant byte has highest address
- **Little Endian**
 - Least significant byte has lowest address
- **Example**
 - Variable x has 4-byte representation `0x01234567`
 - Address given by `&x` is `0x100`

Big Endian

<table>
<thead>
<tr>
<th>Address</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes</td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

Little Endian

<table>
<thead>
<tr>
<th>Address</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes</td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

- Disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code

- Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- Deciphering Numbers
 - Value: 0x12ab
 - Pad to 32 bits: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
Code to print byte representation of data

- Textbook Figure 2.4 at page 42
- Casting pointer to **unsigned char** * creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```
ShowBytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```plaintext
int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
```
Representing Integers

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

int A = 15213;

long int C = 15213;

int B = -15213;

Two’s complement representation
Different compilers & machines assign different locations to objects
Representing Strings

- Strings in C
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code \(0x30\)
 - Digit \(i\) has code \(0x30+i\)
 - String should be null-terminated
 - Final character = 0

- Compatibility
 - Byte ordering not an issue

char S[6] = "18243";

<table>
<thead>
<tr>
<th>Linux/Alpha</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>
Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch

- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)

- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
For this example, Alpha & Sun use two 4-byte instructions
- Use differing numbers of instructions in other cases

PC uses 7 instructions with lengths 1, 2, and 3 bytes
- Same for NT and for Linux
- NT / Linux not fully binary compatible

```
int sum(int x, int y)
{
    return x+y;
}
```

Different machines use totally different instructions and encodings
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

and

A&B = 1 when both A=1 and B=1

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

or

A|B = 1 when either A=1 or B=1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

not

~A = 1 when A=0

<table>
<thead>
<tr>
<th>~</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

exclusive-or (xor)

A^B = 1 when either A=1 or B=1, but not both

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
GENERAL BOOLEAN ALGEBRAS

- Operate on Bit Vectors
 - Operations applied bitwise

\[
\begin{align*}
01101001 & \quad 01101001 & \quad 01101001 & \quad 01101001 \\
& \quad 01010101 & \quad \mid 01010101 & \quad ^\ 01010101 & \quad \sim 01010101 \\
\hline
01000001 & \quad 01111101 & \quad 00111100 & \quad 10101010
\end{align*}
\]

- All of the Properties of Boolean Algebra Apply
Bit-Level Operations in C

- Operations & , | , ~ , ^ available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (char data type)
 - ~0x41 ➔ 0xBE
 - ~01000001₂ ➔ 10111110₂
 - ~0x00 ➔ 0xFF
 - ~00000000₂ ➔ 11111111₂
 - 0x69 & 0x55 ➔ 0x41
 - 01101001₂ & 01010101₂ ➔ 01000001₂
 - 0x69 | 0x55 ➔ 0x7D
 - 01101001₂ | 01010101₂ ➔ 01111101₂
Logic Operations in C

 Contrast to Logical Operators

- `&&`, `||`, `!`
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- `!0x41` → 0x00
- `!0x00` → 0x01
- `!!0x41` → 0x01
- `0x69 && 0x55` → 0x01
- `0x69 || 0x55` → 0x01
- `p && *p` (avoids null pointer access)
Shift Operations

- **Left Shift:** \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right Shift:** \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right

Example

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>

- **Undefined Behavior**
 - Shift amount < 0 or \(\geq \) word size
Cool Stuff with XOR

- Bitwise xor is a form of addition.
- With an extra property that every value is its own additive inverse.
 - $A ^ A = 0$

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```

<table>
<thead>
<tr>
<th></th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A^B</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A^B</td>
<td>(A^B)^B = A</td>
</tr>
<tr>
<td>3</td>
<td>(A^B)^A = B</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Summary

- It’s all about bits & bytes
 - Numbers
 - Programs
 - Text
- Different machines follow different conventions
 - Word size
 - Byte ordering
 - Representations and encoding
- Boolean algebra is mathematical basis
 - Basic form encodes “false” as 0, “true” as 1
 - General form like bit-level operations in C
 • Good for representing & manipulating sets
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- Short int \(x = 15213; \)
- Short int \(y = -15213; \)

C short 2 bytes long

- **Sign Bit**
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>
Encoding Example

\[x = 15213: 00111011 01101101 \]
\[y = -15213: 11000100 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum

<table>
<thead>
<tr>
<th></th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>15213</td>
<td>-15213</td>
</tr>
</tbody>
</table>
Numeric Ranges

- **Unsigned Values**
 - **UMin** = 0
 - 000...0
 - **UMax** = \(2^w - 1\)
 - 111...1

- **Two’s Complement Values**
 - **TMin** = \(-2^{w-1}\)
 - 100...0
 - **TMax** = \(2^{w-1} - 1\)
 - 011...1

- **Other Values**
 - **Minus 1**
 - 111...1

Values for w = 16

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations
- \(|\text{TMin} | = \text{TMax} + 1
 - Asymmetric range
- \(\text{UMax} = 2 \times \text{TMax} + 1

C Programming
- `#include <limits.h>`
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform specific
- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can invert mappings**
 - \(U2B(x) = B2U^{-1}(x) \)
 - Bit pattern for unsigned integer
 - \(T2B(x) = B2T^{-1}(x) \)
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - **Conversion, casting**
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Mapping Between Signed & Unsigned

- **Two's Complement**
 - Maintain Same Bit Pattern
 - Mappings between unsigned and two’s complement numbers
 - keep bit representations and **reinterpret**

- **Unsigned**
 - Maintain Same Bit Pattern
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

T2U and **U2T** indicate the conversion between signed and unsigned numbers.
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

= +/- 16
Relation between Signed & Unsigned

Two’s Complement

\[ux = \begin{cases} x & x \geq 0 \\ x + 2^w & x < 0 \end{cases} \]

Large negative weight becomes Large positive weight

Maintain Same Bit Pattern
2’s Comp. → Unsigned
- Ordering Inversion
- Negative → Big Positive
Signed vs. Unsigned in C

 Constants

- By default are considered to be signed integers
- Unsigned if have “U” as suffix
 - 0U, 4294967259U

 Casting

- Explicit casting between signed & unsigned same as U2T and T2U
 - int tx, ty;
 - unsigned ux, uy;
 - tx = (int) ux;
 - uy = (unsigned) ty;

- Implicit casting also occurs via assignments and procedure calls
 - tx = ux;
 - uy = ty;
Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression
 - Signed values implicitly cast to unsigned
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`
- Example: \(w = 32; \text{TMIN} = -2,147,483,648; \text{TMAX} = 2,147,483,647 \)

<table>
<thead>
<tr>
<th>Constant(_1)</th>
<th>Constant(_2)</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Casting Basic Rules

- Bit pattern is maintained
 - But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Sign Extension

- **Task:**
 - Given w-bit signed integer x
 - Convert it to $w+k$-bit integer with same value

- **Rule:**
 - Make k copies of sign bit:
 - $X = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15123</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15123</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15123</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15123</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Prove correctness by induction on k

- Induction step
 - Extending by single bit maintains value

Key observation: $-2^w = -2^{w+1} + 2^w$
Truncating Numbers

- Truncating a number can alter its value
 - A form of overflow
- For an unsigned number of x
 - Result of truncating it to k bits is equivalent to computing $x \mod 2^k$

```c
int x = 50323;
short int ux = (short) x; // -15213
int y = sx; // -15213
```

\[B2U_k ([x_k, x_{k-1}, \ldots, x_0]) = B2U_w ([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k \]
\[B2T_k ([x_k, x_{k-1}, \ldots, x_0]) = U2T_k (B2U_w ([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k) \]
Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior
Advice on Singed and Unsigned

- Implicit conversion of singed to unsigned
 - Can lead to error or vulnerabilities
- Be careful when using unsigned numbers
 - Java supports only signed integers
 - `>>` : arithmetic shift
 - `>>>` : logical shift
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Claim: following holds for 2’s complement

\[\sim x + 1 = -x \]

Complement

Observation: \[\sim x + x = 1111...111_2 = -1 \]

<table>
<thead>
<tr>
<th>x</th>
<th>10011101</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ \sim x</td>
<td>01100010</td>
</tr>
<tr>
<td>-1</td>
<td>11111111</td>
</tr>
</tbody>
</table>

Increment

\[\sim x + x + (-x + 1) = -1 + (-x + 1) \]

\[\sim x + 1 = -x \]
Complement & Increment Examples

$x = 15213$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$\sim x$</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>$\sim x+1$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$-x$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~ 0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$\sim 0+1$</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
UNSIGNED ADDITION

- Standard addition function
 - Ignores CARRY output
- Implements modular arithmetic
 \[s = UAdd_w(u,v) = u + v \mod 2^w \]

\[
UAdd_w(u,v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing Integer Addition

- 4-bit integers \(u, v \)
- Compute true sum \(\text{Add}_4(u, v) \)
- Values increase linearly with \(u \) and \(v \)
- Forms planar surface
Wraps Around

- If true sum $\geq 2^w$
- At most once

True Sum

2^{w+1}

2^w

0

Modular Sum

Overflow

$UAdd_4(u, v)$
Mathematical Properties of UAdd

- Modular Addition Forms an *Abelian Group*
 - **Closed** under addition

 \[0 \leq UAdd_w(u,v) \leq 2^w - 1 \]
 - **Commutative**

 \[UAdd_w(u,v) = UAdd_w(v,u) \]
 - **Associative**

 \[UAdd_w(t, UAdd_w(u,v)) = UAdd_w(UAdd_w(t,u), v) \]
 - **0 is additive identity**

 \[UAdd_w(u, 0) = u \]
 - **Every element has additive inverse**

 - Let

 \[UComp_w(u) = 2^w - u \]

 \[UAdd_w(u, UComp_w(u)) = 0 \]
Two’s Complement Addition

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>u + v</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Sum: $w+1$ bits</td>
<td>$u + v$</td>
</tr>
<tr>
<td>Discard Carry: w bits</td>
<td>TAdd$_w(u, v)$</td>
</tr>
</tbody>
</table>

- **TAdd** and **UAdd** have identical bit-level behavior
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int)((unsigned)u + (unsigned)v);
    t = u + v
    ```
 - Will give $s == t$
True sum requires \(w+1 \) bits
Drop off MSB
Treat remaining bits as 2’s complement integer
Visualizing 2’s Complement Addition

- Values
 - 4-bit two’s comp.
 - Range from -8 to +7
- Wraps around
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

- **Functionality**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2’s complement integer

\[
TAdd_w(u, v) = \begin{cases}
 u + v + 2^w, & u + v < T \min_w \\
 u + v, & T \min_w \leq u + v \leq T \max_w \\
 u + v - 2^w, & T \max_w \leq u + v \end{cases}
\]

- **Positive Overflow**
 - \(u > 0 \) and \(v < 0 \)

- **Negative Overflow**
 - \(u < 0 \) and \(v > 0 \)
Mathematical Properties of TAdd

- Isomorphisic group to unsigned with UAdd
 \[TAdd(u, v) = U2T(UAdd(T2U(u), T2U(v))) \]
 - Since both have identical bit patterns

- Two’s complement under TAdd forms a group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse
 - Let
 \[TComp(u) = U2T(UComp(T2U(u))) \]
 \[TAdd(u, TComp(u)) = 0 \]

\[
TComp(u) = \begin{cases}
-u & u \neq TMin_w \\
TMin_w & u = TMin_w
\end{cases}
\]
Multiplication

Computing exact product of w-bit numbers x, y
- Either signed or unsigned

Ranges
- Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to $2w$ bits
- Two’s complement min:
 $x \times y \geq (-2^w-1) \times (2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to $2w-1$ bits
- Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to $2w$ bits, but only for $(\text{TMin}_w)^2$

Maintaining exact results
- Would need to keep expanding word size with each product computed
- Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \cdot v$</td>
<td>$\star v$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>True Product: 2^w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discard: w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
</tbody>
</table>

UMult$_w(u, v)$

- **Standard multiplication function**
 - Ignores high order w bits
- **Implements modular arithmetic**
 - $\text{UMult}_w(u, v) = u \cdot v \mod 2^w$
CODE SECURITY EXAMPLE #2

- **SUN XDR library**
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

![Diagram of data transfer and allocation]

```c
malloc(ele_cnt*ele_size)
```
```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
    /*
    * Allocate buffer for ele_cnt objects, each of ele_size bytes
    * and copy from locations designated by ele_src
    */
    void *result = malloc(ele_cnt * ele_size);
    if (result == NULL) {
        /* malloc failed */
        return NULL;
    }
    void *next = result;
    int i;
    for (i = 0; i < ele_cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele_src[i], ele_size);
        /* Move pointer to next memory region */
        next += ele_size;
    }
    return result;
}
```
What if:

- \(\text{ele}_\text{cnt} = 2^{20} + 1 \)
- \(\text{ele}_\text{size} = 4096 = 2^{12} \)
- Allocation = ??

How can I make this function secure?

\[
\text{malloc}(\text{ele}_\text{cnt} \times \text{ele}_\text{size})
\]
Signed Multiplication in C

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u \times v \times v)</th>
<th>Discard: (w) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Product: (2w) bits</td>
<td>(u \times v \times v)</td>
<td>(\text{TMult}_{w}(u, v))</td>
</tr>
</tbody>
</table>

- Standard Multiplication Function
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
UNSIGNED VS. SIGNED MULTIPLICATION

- **Unsigned multiplication**

  ```
  unsigned ux = (unsigned) x;
  unsigned uy = (unsigned) y;
  unsigned up = ux * uy
  ```
 - Truncates product to w-bit number
    ```
    up = UMultw(ux, uy)
    ```
 - Modular arithmetic
    ```
    up = ux * uy mod 2^w
    ```

- **Two’s Complement Multiplication**

  ```
  int x, y;
  int p = x * y;
  ```
 - Compute exact product of two w-bit numbers x, y
 - Truncate result to w-bit number
    ```
    p = TMultw(x, y)
    ```
Power-of-2 Multiply with Shift

- **Operation**
 - $u \ll k$ gives $u \times 2^k$
 - Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>True Product: $w+k$ bits</th>
<th>Discard k bits: w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>$u \times 2^k$</td>
<td>UMult$_w(u, 2^k)$</td>
</tr>
</tbody>
</table>

- **Examples**
 - $u \ll 3 = u \times 8$
 - $u \ll 5 - u \ll 3 = u \times 24$
 - Most machines shift and add faster than multiply

 - Compiler generates this code automatically
C compiler automatically generates shift/add code when multiplying by constant.

C Function

```c
int mul12(int x) {
    return x*12;
}
```

Compiled Arithmetic Operations

- `leal (%eax,%eax,2), %eax`
- `sall $2, %eax`

Explanation

- `t <- x+x*2`
- `return t << 2;`
Unsigned Power-of-2 Divide with Shift

- **Quotient of unsigned by power of 2**
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

Operands:

\[
\begin{array}{cccccc}
\text{u} & \cdots & \cdots & \cdots & \cdots \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{u} / 2^k & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & 0 \\
\end{array}
\]

Division:

\[
\begin{array}{cccccc}
\text{u} / 2^k & 0 & \cdots & 0 & 0 & \cdots \cdots \\
\end{array}
\]

Result:

\[
\begin{array}{cccccc}
\lfloor u / 2^k \rfloor & 0 & \cdots & 0 & 0 & \cdots \cdots \\
\end{array}
\]

Table:

<table>
<thead>
<tr>
<th>x</th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000001 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

![Division Diagram]

<table>
<thead>
<tr>
<th>Operands:</th>
<th>$x / 2^k$</th>
<th>Division:</th>
<th>$x / 2^k$</th>
<th>Result:</th>
<th>RoundDown($x / 2^k$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
<td></td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
<td></td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>11111100 01001001</td>
<td></td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>11111111 11000100</td>
<td></td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- **Quotient of Negative Number by Power of 2**
 - Want \([x \div 2^k]\) (Round Toward 0)
 - \([x \div y] = \lceil (x + y - 1)/y \rceil\)
 - \([x \div 2^k] = \lceil (x + 2^k - 1)/2^k \rceil\)
 - Compute as \([(x + 2^k - 1)/2^k \rceil\)
 - In C: \((x + (1<<k)-1) >> k\)
 - Biases dividend toward 0

- **Case 1: No rounding**

<table>
<thead>
<tr>
<th>Bias: (+2^k-1)</th>
<th>Dividend: (1\ldots;1\ldots;0)</th>
<th>Divisor: (2^k)</th>
<th>([u/2^k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0\ldots;0;1;1)</td>
<td>(1\ldots;1;1)</td>
<td>(0\ldots;0;1;0)</td>
<td>(1\ldots;1)</td>
</tr>
</tbody>
</table>

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result
C Function

```c
int idiv8(int x) {
    return x/8;
}
```

Compiled Arithmetic Operations

```
testl %eax, %eax  
js   L4
L3:  
sarl $3, %eax
ret
L4:   
addl $7, %eax
jmp  L3
```

Explanation

- Uses arithmetic shift for `int`
- For Java Users
 - Arithmetic shift written as `>>`

```java
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```
ARITHMETIC: BASIC RULES

► **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition $\mod 2^w$
 * Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition $\mod 2^w$ (result in proper range)
 * Mathematical addition + possible addition or subtraction of 2^w

► **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication $\mod 2^w$
 - Signed: modified multiplication $\mod 2^w$ (result in proper range)
Arithmetic: Basic Rules

- **Unsigned ints, 2’s complement ints** are isomorphic rings: isomorphism = casting

- **Left shift**
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift

- **Right shift**
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Properties of Unsigned Arithmetic

Unsigned multiplication with addition forms commutative ring

- Addition is commutative group
- Closed under multiplication
 \[0 \leq \text{UMult}_w(u,v) \leq 2^w - 1 \]
- Multiplication Commutative
 \[\text{UMult}_w(u,v) = \text{UMult}_w(v,u) \]
- Multiplication is Associative
 \[\text{UMult}_w(t,\text{UMult}_w(u,v)) = \text{UMult}_w(\text{UMult}_w(t,u),v) \]
- 1 is multiplicative identity
 \[\text{UMult}_w(u,1) = u \]
- Multiplication distributes over addition
 \[\text{UMult}_w(t,\text{UAdd}_w(u,v)) = \text{UAdd}_w(\text{UMult}_w(t,u),\text{UMult}_w(t,v)) \]
Properties of Two’s Comp. Arithmetic

- Isomorphic algebras
 - Unsigned multiplication and addition
 - Truncating to \(w \) bits
 - Two’s complement multiplication and addition
 - Truncating to \(w \) bits

- Both form rings
 - Isomorphic to ring of integers \(\text{mod } 2^w \)

- Comparison to (mathematical) integer arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,
 \[
 u > 0 \implies u + v > v \\
 u > 0, \ v > 0 \implies u \cdot v > 0
 \]
 - These properties are not obeyed by two’s comp. arithmetic
 \[
 T_{\text{Max}} + 1 = T_{\text{Min}} \\
 15213 \times 30426 = -10030 \quad (16\text{-bit words})
 \]
Why Should I Use Unsigned?

- **Practice Problem 2.23**
- **Don’t** use just because number nonnegative
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
    ```
- **Do** use when performing modular arithmetic
 - Multiprecision arithmetic
- **Do** use when using bits to represent sets
 - Logical right shift, no sign extension
Integer C Puzzles

- \(x < 0 \implies ((x*2) < 0) \)
- \(ux >= 0 \)
- \(x & 7 == 7 \implies (x<<30) < 0 \)
- \(ux > -1 \)
- \(x > y \implies -x < -y \)
- \(x * x >= 0 \)
- \(x > 0 && y > 0 \implies x + y > 0 \)
- \(x >= 0 \implies -x <= 0 \)
- \(x <= 0 \implies -x >= 0 \)
- \((x|\neg x)\gg31 == -1 \)
- \(ux \gg 3 == ux/8 \)
- \(x \gg 3 == x/8 \)
- \(x & (x-1) != 0 \)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```