FLOATING POINT

Spring, 2013
Euiseong Seo
(euiseong@skku.edu)
Review: Integers

- Representation: **unsigned** and **signed**
 - Conversion, casting
 - Bit representation maintained but reinterpreted

- Expanding, truncating
 - Truncating == \texttt{mod}

- Addition, negation, multiplication, shifting
 - Operations are \texttt{mod} \(2^w\)

- “Ring” properties hold
 - Associative, commutative, distributive, additive 0 and inverse

- Ordering properties do not hold
 - \(u > 0\) does not mean \(u + v > v\)
 - \(u,v > 0\) does not mean \(u \cdot v > 0\)
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
What is 1011.101_2?
Fractional Binary Numbers

- **Representation**
 - Bits to right of “**BINARY POINT**” represent fractional powers of 2
 - Represents rational number: \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Number

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5+3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2+7/8</td>
<td>10.111₁₂</td>
</tr>
<tr>
<td>63/64</td>
<td>0.111111₁₂</td>
</tr>
</tbody>
</table>

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form $0.111111\ldots₂$ just below 1.0
 - $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^i} + \ldots \rightarrow 1.0$
 - Use notation $1.0 - \varepsilon$
Representable Numbers

- **Limitation**
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3$</td>
<td>0.0101010101[01]...2</td>
</tr>
<tr>
<td>$1/5$</td>
<td>0.001100110011[0011]...2</td>
</tr>
<tr>
<td>$1/10$</td>
<td>0.0001100110011[0011]...2</td>
</tr>
</tbody>
</table>
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

- Numerical Form:
 \((-1)^s \times M \times 2^E\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Significand \(M\) normally a fractional value in range \([1.0,2.0)\).
 - Exponent \(E\) weights value by power of two

- Encoding
 - MSB \(s\) is sign bit \(s\)
 - \(\text{exp}\) field encodes \(E\) (but is not equal to \(E\))
 - \(\text{frac}\) field encodes \(M\) (but is not equal to \(M\))
Precisions

- **Single precision: 32 bits**

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>23</td>
</tr>
</tbody>
</table>

- **Double precision: 64 bits**

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>52</td>
</tr>
</tbody>
</table>

- **Extended precision: 80 bits (Intel only)**

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>63 or 64</td>
</tr>
</tbody>
</table>
Normalized Values

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp - Bias
 - Exp: unsigned value exp
 - Bias = 2\(^{e-1}\) - 1, where e is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x₂
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 (M = 2.0 - \(\varepsilon\))
 - Get extra leading bit for “free”
Normalized Encoding Example

- Value: Float $F = 15213.0$;
 - $15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$

- Significand
 - $M = 1.1101101101101_2$
 - $\text{frac} = 11011011010100000000000_2$

- Exponent
 - $E = 13$
 - Bias = 127
 - $\text{Exp} = 140 = 10001100_2$

- Result
 - $s \hspace{1cm} \text{exp} \hspace{1cm} \text{frac}$
Denormalized Values

- Condition: \(\text{exp} = 000...0 \)
- Exponent value: \(\text{E} = -\text{Bias} + 1 \) (instead of \(\text{E} = 0 - \text{Bias} \))
- Significand coded with implied leading 0: \(\text{M} = 0.xxx...x_2 \)
 - \(xxx...x \): bits of \(\text{frac} \)

- Cases
 - \(\text{exp} = 000...0, \text{frac} = 000...0 \)
 - Represents value 0
 - Note distinct values: +0 and –0 (why?)
 - \(\text{exp} = 000...0, \text{frac} \neq 000...0 \)
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equi-spaced
Special Values

- **Condition:** $\text{exp} = 111...1$
- **Case:** $\text{exp} = 111...1$, $\text{frac} = 000...0$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- **Case:** $\text{exp} = 111...1$, $\text{frac} \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, $+\infty$, $-\infty$, $+\infty \times 0$
Visualization

-∞ -Normalized -Denorm +Denorm +Normalized +∞

NaN -0 +0 NaN
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Tiny Floating Point Example

- **8-bit Floating Point Representation**
 - Sign bit is in the most significant bit
 - Next four bits are the exponent, with a bias of 7.
 - Last three bits are frac

- **Same general form as IEEE Format**
 - Normalized, denormalized
 - Representation of 0, NaN, infinity
Values Related to the Exponent

<table>
<thead>
<tr>
<th>Exp</th>
<th>exp</th>
<th>E</th>
<th>2^E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>-6</td>
<td>$1/64$ (denorms)</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>-6</td>
<td>$1/64$</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>-5</td>
<td>$1/32$</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>-4</td>
<td>$1/16$</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>-3</td>
<td>$1/8$</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>-2</td>
<td>$1/4$</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>-1</td>
<td>$1/2$</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>+1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>+2</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>+3</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>+4</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>+5</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>+6</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>+7</td>
<td>128</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>n/a</td>
<td>(inf, NaN)</td>
</tr>
</tbody>
</table>
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0000</td>
<td>000</td>
<td></td>
<td>1/8*1/64 = 1/512</td>
</tr>
<tr>
<td></td>
<td>0000</td>
<td>001</td>
<td></td>
<td>2/8*1/64 = 2/512</td>
</tr>
<tr>
<td></td>
<td>0000</td>
<td>010</td>
<td></td>
<td>6/8*1/64 = 6/512</td>
</tr>
<tr>
<td></td>
<td>0000</td>
<td>110</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
</tr>
<tr>
<td></td>
<td>0000</td>
<td>111</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
</tr>
<tr>
<td></td>
<td>0001</td>
<td>000</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
</tr>
<tr>
<td></td>
<td>0001</td>
<td>001</td>
<td>-6</td>
<td>10/8*1/64 = 10/8</td>
</tr>
<tr>
<td></td>
<td>0110</td>
<td>110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
</tr>
<tr>
<td></td>
<td>0110</td>
<td>111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
</tr>
<tr>
<td></td>
<td>0111</td>
<td>000</td>
<td>0</td>
<td>8/8*1 = 1</td>
</tr>
<tr>
<td></td>
<td>0111</td>
<td>001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
</tr>
<tr>
<td></td>
<td>0111</td>
<td>010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
</tr>
<tr>
<td></td>
<td>1110</td>
<td>110</td>
<td>7</td>
<td>14/8*128 = 224</td>
</tr>
<tr>
<td></td>
<td>1110</td>
<td>111</td>
<td>7</td>
<td>15/8*128 = 240</td>
</tr>
<tr>
<td>0</td>
<td>1111</td>
<td>000</td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>

- **Denormalized numbers**
 - closest to zero
 - largest denorm

- **Normalized numbers**
 - smallest norm
 - closest to 1 below
 - closest to 1 above
 - largest norm
DISTRIBUTION OF VALUES

- 6-bit IEEE-like format
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is $2^{3-1}-1 = 3$

- Notice how the distribution gets denser toward zero.
6-bit IEEE-like format
- $e = 3$ exponent bits
- $f = 2$ fraction bits
- Bias is $2^{3-1} - 1 = 3$
Do It Yourself

- Convert 10.4_{10} to single precision floating point
- Recall that:

10.4_{10} is 1010.0110_2
Do It Yourself

1. Normalize
 ° $1010.0110_2 \times 2^0 = 1.0100110_2 \times 2^3$

2. Determine sign bit
 ° Positive, so $S = 0$

3. Determine exponent
 ° 2^3 so $3 + \text{bias} (= 127) = 130 = 10000010_2$

4. Determine Significand
 ° Drop leading 1 of mantissa, expand to 23 bits = 01001100110011001100110

| 0 | 10000010 | 01001100110011001100110 |
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numerical</th>
<th>Approx. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
| Smallest Positive Denormalized | 00...00 | 00...01 | $2^{-\{23,52\}} \times 2^{-\{126,1022\}}$ | Single $\approx 1.4 \times 10^{-45}$
Double $\approx 4.9 \times 10^{-324}$ |
| Largest Denormalized | 00...00 | 11...11 | $(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$ | Single $\approx 1.18 \times 10^{-38}$
Double $\approx 2.2 \times 10^{-308}$ |
| Smallest Positive Normalized | 00...01 | 00...00 | $1.0 \times 2^{-\{126,1022\}}$ | Just larger than largest denormalized |
| One | 01...11 | 00...00 | 1.0 | |
| Largest Normalized | 11...10 | 11...11 | $(2.0 - \varepsilon) \times 2^{127,1023}$ | Single $\approx 3.4 \times 10^{38}$
Double $\approx 1.8 \times 10^{308}$ |
Special Properties of Encoding

- FP (Floating Point) zero same as integer zero
 - All bits are zero

- Can (Almost) use unsigned integer comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denormalized vs. normalized
 - Normalized vs. infinity
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point Operations

- $x + f_y = \text{Round}(x + y)$
- $x \times f_y = \text{Round}(x \times y)$

Basic idea
- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
Rounding 4 Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>-$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>-$1</td>
</tr>
<tr>
<td>Round down (-∞)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>-$2</td>
</tr>
<tr>
<td>Round up (+∞)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>-$1</td>
</tr>
<tr>
<td>Nearest Even (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>-$2</td>
</tr>
</tbody>
</table>

- **Round down**
 - Rounded result is close to but no greater than true result.

- **Round up**
 - Rounded result is close to but no less than true result.

What are the advantages of the modes?
Default rounding mode
- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

Applying to other decimal places / bit positions
- When exactly halfway between two possible values
 - ROUND SO THAT LEAST SIGNIFICANT DIGIT IS EVEN
- E.g., round to nearest hundredth
 - 1.2349999 → 1.23 (Less than half way)
 - 1.2350001 → 1.24 (Greater than half way)
 - 1.2350000 → 1.24 (Half way—round up)
 - 1.2450000 → 1.24 (Half way—round down)
Rounding Binary Numbers

- **Binary Fractional Numbers**
 - “Even” when least significant bit is 0
 - “Half way” when bits to right of rounding position = 100…\(2\)

- **Examples**
 - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011(_2)</td>
<td>10.00(_2)</td>
<td>down</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110(_2)</td>
<td>10.01(_2)</td>
<td>up</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100(_2)</td>
<td>11.00(_2)</td>
<td>up</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100(_2)</td>
<td>10.10(_2)</td>
<td>down</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
Floating Point Multiplication

\[(-1)^{s_1} \times M_1 \times 2^{E_1} \times (-1)^{s_2} \times M_2 \times 2^{E_2} \]

- **Exact Result:** \((-1)^s \times M \times 2^E\)
 - Sign \(s\): \(s_1 \land s_2\)
 - Significand \(M\): \(M_1 \times M_2\)
 - Exponent \(E\): \(E_1 + E_2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \(\text{frac}\) precision

- **Implementation**
 - Biggest chore is \text{MULTIPLYING SIGNIFICANDS}
Floating Point Addition

\[(–1)^{s_1} \times M_1 \times 2^{E_1} + (–1)^{s_2} \times M_2 \times 2^{E_2}\]

- **Assume** $E_1 > E_2$
- **Exact Result:** \[(–1)^s \times M \times 2^E \]
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E_1
- **Fixing**
 - If $M \geq 2$, shift M right, increment E
 - if $M < 1$, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision
Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition? Yes
 - But may generate infinity or NaN
 - Commutative? Yes
 - Associative? No
 - Overflow and inexactness of rounding
 - 0 is additive identity? Yes
 - Every element has additive inverse
 - Except for infinities & NaNs
 - Almost

- Monotonicity
 - $a \geq b \Rightarrow a+c \geq b+c?$ Almost
 - Except for infinities & NaNs
- Compare to Commutative Ring -
 - Closed under multiplication? Yes
 - But may generate infinity or NaN
 - Multiplication Commutative? Yes
 - Multiplication is Associative? No
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity? Yes
 - Multiplication distributes over addition? No
 - Possibility of overflow, inexactness of rounding

- Monotonicity -
 - \(a \geq b \& c \geq 0 \Rightarrow a \cdot c \geq b \cdot c? \) Almost
 - Except for infinities & NaNs
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point in C

C Guarantees Two Levels
- `float` single precision
- `double` double precision

Conversions / Casting
- Casting between `int`, `float`, and `double` changes bit representation
- `double/float ⇒ int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to T_{min}
- `int ⇒ double`
 - Exact conversion, as long as `int` has ≤ 53 bit word size
- `int ⇒ float`
 - Will round according to rounding mode
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```c
int x = ...;
float f = ...;
double d = ...;
```

Assume neither `d` nor `f` is NaN

° `x == (int)(float) x`
° `x == (int)(double) x`
° `f == (float)(double) f`
° `d == (float) d`
° `f == -(-f);`
° `2/3 == 2/3.0`
° `d < 0.0 ⇒ ((d*2) < 0.0)`
° `d > f ⇒ -f > -d`
° `d * d >= 0.0`
° `(d + f) - d == f`
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
IEEE Floating Point has clear mathematical properties

Represents numbers of form $M \times 2^E$

One can reason about operations independent of implementation

- As if computed with perfect precision and then rounded

Not the same as real arithmetic

- Violates associativity / distributivity
- Makes life difficult for compilers & serious numerical applications programmers