Bits, Bytes, and Integers

Spring, 2014

Euiseong Seo
(euiseong@skku.edu)

This Powerpoint slides are modified from its original version available at http://www.cs.cmu.edu/afs/cs/academic/class/15213-s09/www/lectures/ppt-sources/
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
BINARY REPRESENTATIONS
Encoding Byte Values

- Byte = 8 bits
 - Binary: 00000000_2 to 11111111_2
 - Decimal: 0_10 to 255_10
 - Hexadecimal: 00_16 to FF_16
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B16 in C as
 - 0xFA1D37B
 - 0xfa1d37b
Programs refer to virtual addresses
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - System provides address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + run-time system control allocation
 - Where different program objects should be stored
 - All allocation within single virtual address space
Machine Words

- Machine has “Word Size”
 - Nominal size of integer-valued data
 - Including addresses
 - Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 × 10^{19} bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Addresses specify byte locations
- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data Sizes

- Computer and compiler support multiple data formats
 - Using different ways to encode data
 - Integers and floating point
 - Using different lengths
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
A multi-byte object is stored as a contiguous sequence of bytes

- With a address of the object given by the smallest address of the bytes

How should bytes within a multi-byte word be ordered in memory?

Conventions

- Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
- Little Endian: x86
 - Least significant byte has lowest address
BYTE ORDERING EXAMPLE

- **Big Endian**
 - Least significant byte has highest address
- **Little Endian**
 - Least significant byte has lowest address
- **Example**
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
READING BYTE-REVERSED LISTINGS

► Disassembly
 ○ Text representation of binary machine code
 ○ Generated by program that reads the machine code

► Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

► Deciphering Numbers
 ○ Value: 0x12ab
 ○ Pad to 32 bits: 0x000012ab
 ○ Split into bytes: 00 00 12 ab
 ○ Reverse: ab 12 00 00
Examining Data Representations

- Code to print byte representation of data
 - Textbook Figure 2.4 at page 42
 - Casting pointer to *unsigned char* creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux):

int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcbb 0x00
Representing Integers

- **Decimal**: 15213
- **Binary**: 0011 1011 0110 1101
- **Hex**: 3B 6D

<table>
<thead>
<tr>
<th>IA32, x86-64</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>6D</td>
<td>00</td>
</tr>
<tr>
<td>3B</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>3B</td>
</tr>
<tr>
<td>00</td>
<td>6D</td>
</tr>
</tbody>
</table>

Int A = 15213;

<table>
<thead>
<tr>
<th>IA32, x86-64</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>FF</td>
</tr>
<tr>
<td>C4</td>
<td>FF</td>
</tr>
<tr>
<td>FF</td>
<td>C4</td>
</tr>
<tr>
<td>FF</td>
<td>93</td>
</tr>
</tbody>
</table>

Int B = -15213;

Long int C = 15213;

Two’s complement representation
int B = -15213;
int *P = &B;

Different compilers & machines assign different locations to objects
Representing Strings

- Strings in C
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- Compatibility
 - Byte ordering not an issue

char S[6] = "18243";

Linux/Alpha

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>38</td>
<td>32</td>
<td>34</td>
<td>33</td>
<td>00</td>
</tr>
</tbody>
</table>

Sun

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>38</td>
<td>32</td>
<td>34</td>
<td>33</td>
<td>00</td>
</tr>
</tbody>
</table>
Machine-Level Code Representation

- Encode Program as Sequence of Instructions
 - Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
 - Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)
 - Different instruction types and encodings for different machines
 - Most code not binary compatible

- Programs are Byte Sequences Too!
Representing Instructions

- For this example, Alpha & Sun use two 4-byte instructions
 - Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

```
int sum(int x, int y)
{
    return x+y;
}
```

<table>
<thead>
<tr>
<th>Alpha sum</th>
<th>Sun sum</th>
<th>PC sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>81</td>
<td>55</td>
</tr>
<tr>
<td>00</td>
<td>C3</td>
<td>89</td>
</tr>
<tr>
<td>30</td>
<td>E0</td>
<td>E5</td>
</tr>
<tr>
<td>42</td>
<td>08</td>
<td>8B</td>
</tr>
<tr>
<td>01</td>
<td>90</td>
<td>45</td>
</tr>
<tr>
<td>80</td>
<td>02</td>
<td>0C</td>
</tr>
<tr>
<td>FA</td>
<td>00</td>
<td>03</td>
</tr>
<tr>
<td>6B</td>
<td>09</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3</td>
</tr>
</tbody>
</table>
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

and

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

not

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

exclusive-or (xor)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01101001 & 01010101</td>
<td>01101001</td>
<td>01010101</td>
</tr>
<tr>
<td>01101001</td>
<td>01111101</td>
<td>00111100</td>
</tr>
<tr>
<td>01000001</td>
<td>01111101</td>
<td>01101001</td>
</tr>
</tbody>
</table>

- All of the Properties of Boolean Algebra Apply
Bit-Level Operations in C

Operations &, |, ~, ^ available in C

- Apply to any “integral” data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (char data type)

- ~0x41 → 0xBE
 - ~01000001₂ → 10111110₂
- ~0x00 → 0xFF
 - ~00000000₂ → 11111111₂
- 0x69 & 0x55 → 0x41
 - 01101001₂ & 01010101₂ → 01000001₂
- 0x69 | 0x55 → 0x7D
 - 01101001₂ | 01010101₂ → 01111101₂
Logic Operations in C

Contrast to Logical Operators
- &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

Examples (char data type)
- !0x41 \rightarrow 0x00
- !0x00 \rightarrow 0x01
- !!0x41 \rightarrow 0x01
- 0x69 && 0x55 \rightarrow 0x01
- 0x69 || 0x55 \rightarrow 0x01
- p && *p \ (avoids null pointer access)
Shift Operations

- **Left Shift:** \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right Shift:** \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right

- **Undefined Behavior**
 - Shift amount \(< 0 \) or \(\geq \) word size
Cool Stuff with XOR

- Bitwise xor is form of addition
- With extra property that every value is its own additive inverse
 - $A \oplus A = 0$

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```

<table>
<thead>
<tr>
<th></th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>$A \oplus B$</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>$A \oplus B$</td>
<td>$(A \oplus B) \oplus B = A$</td>
</tr>
<tr>
<td>3</td>
<td>$(A \oplus B) \oplus A = B$</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
SUMMARY

► It’s all about bits & bytes
 ○ Numbers
 ○ Programs
 ○ Text

► Different machines follow different conventions
 ○ Word size
 ○ Byte ordering
 ○ Representations and encoding

► Boolean algebra is mathematical basis
 ○ Basic form encodes “false” as 0, “true” as 1
 ○ General form like bit-level operations in C
 • Good for representing & manipulating sets
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>
Encoding Example

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum

| 15213 | -15213 |
Numeric Ranges

- **Unsigned Values**
 - $U_{\text{Min}} = 0$
 - 000...0
 - $U_{\text{Max}} = 2^w - 1$
 - 111...1

- **Two's Complement Values**
 - $T_{\text{Min}} = -2^{w-1}$
 - 100...0
 - $T_{\text{Max}} = 2^{w-1} - 1$
 - 011...1

- **Other Values**
 - Minus 1
 - 111...1

Values for $w = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations
- $|\text{TMin}| = \text{TMax} + 1$
 - Asymmetric range
- $\text{UMax} = 2 \times \text{TMax} + 1$

C Programming
- `#include <limits.h>`
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform specific
UNSIGNED & SIGNED NUMERIC VALUES

- Equivalence
 - Same encodings for nonnegative values

- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

⇒ Can invert mappings
 - \(U2B(x) = B2U^{-1}(x) \)
 * Bit pattern for unsigned integer
 - \(T2B(x) = B2T^{-1}(x) \)
 * Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Mappings between unsigned and two’s complement numbers

- keep bit representations and reinterpret
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Relation between Signed & Unsigned

Two’s Complement \(\rightarrow \) Unsigned \(\rightarrow \) +

\[x \rightarrow T2B \rightarrow B2U \rightarrow u_x \]

Maintain Same Bit Pattern

\[
\begin{align*}
ux & = \begin{cases}
x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases}
\end{align*}
\]

Large negative weight becomes Large positive weight
2’s Comp. → Unsigned

- Ordering Inversion
- Negative → Big Positive
Signed vs. Unsigned in C

Constants
- By default are considered to be signed integers
- Unsigned if have “U” as suffix
 - `0U`, `4294967259U`

Casting
- Explicit casting between signed & unsigned same as `U2T` and `T2U`
 - `int tx, ty;`
 - `unsigned ux, uy;`
 - `tx = (int) ux;`
 - `uy = (unsigned) ty;`
- Implicit casting also occurs via assignments and procedure calls
 - `tx = ux;`
 - `uy = ty;`
Casting Surprises

Expression Evaluation
- If there is a mix of unsigned and signed in single expression
 - Signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Example: \(w = 32; TMIN = -2,147,483,648; TMAX = 2,147,483,647 \)

<table>
<thead>
<tr>
<th>Constant\textsubscript{1}</th>
<th>Constant\textsubscript{2}</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Casting Basic Rules

- Bit pattern is maintained
 - But reinterpreted
- Can have unexpected effects: adding or subtracting \(2^w\)
- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Sign Extension

- **Task:**
 - Given \(w \)-bit signed integer \(x \)
 - Convert it to \(w+k \)-bit integer with same value

- **Rule:**
 - Make \(k \) copies of sign bit:
 - \(X = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0 \)

\[\begin{array}{c}
X = x_{w-1} \ldots x_{w-1} \ldots x_{w-2} \ldots x_0 \\
X' = \text{Extended } X \\
k \text{ copies of MSB}
\end{array} \]
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15123</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15123</td>
<td>00 00</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15123</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15123</td>
<td>FF FF</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Prove correctness by induction on k

- Induction step
 - Extending by single bit maintains value

- Key observation: $-2^w = -2^{w+1} + 2^w$
Truncating Numbers

- Truncating a number can alter its value
 - A form of overflow
- For an unsigned number of x
 - Result of truncating it to k bits is equivalent to computing $x \mod 2^k$

```c
int x = 50323;
short int ux = (short) x; // -15213
int y = sx; // -15213
```

$$B2U_k([x_k,x_{k-1},...,x_0]) = B2U_w([x_w,x_{w-1},...,x_0]) \mod 2^k$$

$$B2T_k([x_k,x_{k-1},...,x_0]) = U2T_k(B2U_w([x_w,x_{w-1},...,x_0]) \mod 2^k)$$
Expanding (e.g., short int to int)
- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result

Truncating (e.g., unsigned to unsigned short)
- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small numbers yields expected behavior
Advice on Singed and Unsigned

- Implicit conversion of singed to unsigned
 - Can lead to error or vulnerabilities

- Be careful when using unsigned numbers
 - Java supports only signed integers
 - `>>` : arithmetic shift
 - `>>>` : logical shift
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Claim: following holds for 2’s complement

\[\sim x + 1 = -x \]

Complement

Observation: \[\sim x + x = 1111\ldots111_2 = -1 \]

<table>
<thead>
<tr>
<th>x</th>
<th>10011101</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ \sim x</td>
<td>01100010</td>
</tr>
</tbody>
</table>

| -1 | 11111111 |

Increment

\[\sim x + x + (\sim x + 1) = -1 + (\sim x + 1) \]

\[\sim x + 1 = -x \]
Complement & Increment Examples

\[x = 15213 \]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>(\sim x)</td>
<td>-15214</td>
<td>C4 92 11000100 10010010</td>
</tr>
<tr>
<td>(\sim x + 1)</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
<tr>
<td>(-x)</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>

\[x = 0 \]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00000000 00000000</td>
</tr>
<tr>
<td>(\sim 0)</td>
<td>-1</td>
<td>FF FF 11111111 11111111</td>
</tr>
<tr>
<td>(\sim 0 + 1)</td>
<td>0</td>
<td>00 00 00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: \(w \) bits

\[
\begin{array}{c}
u \\
+ v \\
u + v
\end{array}
\]

True Sum: \(w+1 \) bits

\[
\begin{array}{c}
u + v
\end{array}
\]

Discard Carry: \(w \) bits

\[
\begin{array}{c}
\text{UAdd}_w(u, v)
\end{array}
\]

- Standard addition function
 - Ignores CARRY output
- Implements modular arithmetic
 \[
s = \text{UAdd}_w(u, v) = u + v \mod 2^w
\]

\[
\text{UAdd}_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing Integer Addition

- 4-bit integers u, v
- Compute true sum $\text{Add}_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum \(\geq 2^w \)
 - At most once

True Sum

\[0 \rightarrow 2^w \rightarrow 2^{w+1} \]

Overflow

Modular Sum

\[UAdd_4(u, v) \]
Mathematical Properties of UAdd

- Modular Addition Forms an Abelian Group
 - **Closed** under addition
 \[0 \leq \text{UAdd}_w(u,v) \leq 2^w - 1 \]
 - **Commutative**
 \[\text{UAdd}_w(u,v) = \text{UAdd}_w(v,u) \]
 - **Associative**
 \[\text{UAdd}_w(t, \text{UAdd}_w(u,v)) = \text{UAdd}_w(\text{UAdd}_w(t,u),v) \]
 - **0** is additive identity
 \[\text{UAdd}_w(u,0) = u \]
 - Every element has additive inverse
 - Let
 \[\text{UComp}_w(u) = 2^w - u \]
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\begin{array}{c}
\text{+}
\end{array}
\end{array}
\]

True Sum: \(w + 1 \) bits

\[
\begin{array}{c}
\begin{array}{c}
\text{+}
\end{array}
\end{array}
\]

Discard Carry: \(w \) bits

\[
\begin{array}{c}
\begin{array}{c}
\text{TAdd}_w(u, v)
\end{array}
\end{array}
\]

- **TAdd** and **UAdd** have identical bit-level behavior
- Signed vs. unsigned addition in C:
 - \[
 \text{int } s, t, u, v;
 \]
 - \[
 s = (\text{int})(\text{unsigned})u + (\text{unsigned})v;
 \]
 - \[
 t = u + v
 \]
 - Will give \(s == t \)
- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s complement integer

True Sum

011...1 2^w-1
0100...0 2^w-1
0000...0 0
1011...1 $-2^{w-1}-1$
1000...0 -2^w

TAdd Result

011...1
000...0
100...0
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps around**
 - If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
 - If sum < -2^{w-1}
 - Becomes positive
 - At most once
Characterizing TAdd

- Functionality
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2’s complement integer

- TAdd\((u, v) \) function:
 \[
 TAdd_w(u, v) = \begin{cases}
 u + v + 2^w, & u + v < T\min_w \\
 u + v, & T\min_w \leq u + v \leq T\max_w \\
 u + v - 2^w, & T\max_w \leq u + v
 \end{cases}
 \]

- Positive Overflow:
 - \(u > 0 \) and \(v > 0 \)

- Negative Overflow:
 - \(u < 0 \) or \(v < 0 \)
Mathematical Properties of TAdd

- Isomorphisic group to unsigned with UAdd
 \[TAdd_w(u,v) = U2T(UAdd_w(T2U(u), T2U(v))) \]
 - Since both have identical bit patterns

- Two’s complement under TAdd forms a group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse
 - Let
 \[TComp_w(u) = U2T(UComp_w(T2U(u))) \]
 \[TAdd_w(u, TComp_w(u)) = 0 \]

\[TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases} \]
Multiplication

Computing exact product of w-bit numbers x, y

- Either signed or unsigned

Ranges

- Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to $2w$ bits

- Two’s complement min:
 $x \times y \geq (-2^w-1) \times (2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to $2w-1$ bits

- Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to $2w$ bits, but only for $(\text{TMin}_w)^2$

Maintaining exact results

- Would need to keep expanding word size with each product computed
- Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \cdot v$</td>
<td>$\cdot \cdot \cdot$</td>
<td></td>
</tr>
<tr>
<td>$u \cdot v \ast v$</td>
<td>$\cdot \cdot \cdot$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operands: w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \cdot v$</td>
</tr>
<tr>
<td>$u \cdot v \ast v$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>True Product: $2w$ bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\cdot \cdot \cdot$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discard: w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMult$_w(u, v)$</td>
</tr>
</tbody>
</table>

- **Standard multiplication function**
 - Ignores high order w bits
- **Implements modular arithmetic**
 - $\text{UMult}_w(u, v) = u \cdot v \mod 2^w$
Code Security Example #2

- **SUN XDR library**
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

- `malloc(ele_cnt*ele_size)`
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL) /* malloc failed */
 return NULL;
 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
What if:

- $ele_cnt = 2^{20} + 1$
- $ele_size = 4096 = 2^{12}$
- Allocation = ??

How can I make this function secure?
Signed Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard: w bits

Standard Multiplication Function
- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

<table>
<thead>
<tr>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \cdot v$</td>
<td>$\ast v$</td>
</tr>
<tr>
<td>$\text{T Mult}_w(u,v)$</td>
<td></td>
</tr>
</tbody>
</table>
UNSIGNED VS. SIGNED MULTIPLICATION

► Unsigned multiplication

unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

○ Truncates product to w-bit number
 up = UMultw(ux, uy)

○ Modular arithmetic
 up = ux * uy mod 2^w

► Two’s Complement Multiplication

int x, y;
int p = x * y;

○ Compute exact product of two w-bit numbers x, y

○ Truncate result to w-bit number p = TMultw(x, y)
Power-of-2 Multiply with Shift

Operation
- $u \ll k$ gives $u \cdot 2^k$
- Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>$u \cdot 2^k$</th>
<th>True Product: $w+k$ bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u</td>
<td>$u \cdot 2^k$</td>
</tr>
<tr>
<td></td>
<td>k</td>
<td>$0 \ldots 010 \ldots 00$</td>
</tr>
<tr>
<td></td>
<td>u</td>
<td>$u \cdot 2^k$</td>
</tr>
<tr>
<td></td>
<td>k</td>
<td>$0 \ldots 010 \ldots 00$</td>
</tr>
</tbody>
</table>

Examples
- $u \ll 3 == u \cdot 8$
- $u \ll 5 - u \ll 3 == u \cdot 24$
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
C compiler automatically generates shift/add code when multiplying by constant

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

```c
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```
Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned by power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

Division:

<table>
<thead>
<tr>
<th>Operands:</th>
<th>Division:</th>
<th>Result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(\lfloor u / 2^k \rfloor)</td>
<td>(\lfloor u / 2^k \rfloor)</td>
</tr>
<tr>
<td>(/ 2^k)</td>
<td>(0 \ldots 010 \ldots 00)</td>
<td>(0 \ldots 00 \ldots)</td>
</tr>
<tr>
<td>(u / 2^k)</td>
<td>(0 \ldots 00 \ldots)</td>
<td>(0 \ldots 00 \ldots)</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x (\gg 1)</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x (\gg 4)</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000001 10110110</td>
</tr>
<tr>
<td>x (\gg 8)</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
C Function

```c
unsigned udiv8(unsigned x) {
    return x/8;
}
```

Compiled Arithmetic Operations

- `shrl $3, %eax`

Explanation

- `# Logical shift return x >> 3;`

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as `>>>`
Quotient of Signed by Power of 2

- $x \gg k$ gives $\lfloor x / 2^k \rfloor$
- Uses arithmetic shift
- Rounds wrong direction when $u < 0$

Division:

$$ x / 2^k $$

Operands:

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- **Quotient of Negative Number by Power of 2**
 - Want \([x \ / \ 2^k]\) (Round Toward 0)
 - \([x \ / \ y] == \lfloor (x + y - 1)/y \rfloor\)
 - \([x \ / \ 2^k] == \lfloor (x + 2^k - 1)/2^k \rfloor\)
 - Compute as \([x + 2^k - 1]/2^k\)
 - In C: \((x + (1<<k)-1) >> k\)
 - Biases dividend toward 0

- **Case 1: No rounding**

<table>
<thead>
<tr>
<th>Bias:</th>
<th>Dividend:</th>
<th>Divisor:</th>
<th>([u \ / \ 2^k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+2^k-1)</td>
<td>(1\ldots\ 01\ldots\ 11)</td>
<td>(0\ldots\ 01\ldots\ 00)</td>
<td>(1\ldots\ 11\ldots\ 00)</td>
</tr>
</tbody>
</table>

Biasing has no effect
Case 2: Rounding

- **Dividend:** $x + 2^k - 1$

 - **Divisor:** 2^k

 - **Result:** $\left\lfloor \frac{x}{2^k} \right\rfloor$

 - **Binary Point:** Incremented by 1

 - **Biasing adds 1 to final result**
Compiled Signed Division Code

C Function

```c
int idiv8(int x) {
    return x/8;
}
```

- Uses arithmetic shift for `int`
- For Java Users
 - Arithmetic shift written as `>>`

Compiled Arithmetic Operations

```assembly
testl %eax, %eax
js   L4
L3:
    sarl $3, %eax
    ret
L4:
    addl $7, %eax
    jmp   L3
```

Explanation

```assembly
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```
Arithmetic: Basic Rules

▶ **Addition:**
- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition $\text{mod } 2^w$
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition $\text{mod } 2^w$ (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

▶ **Multiplication:**
- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication $\text{mod } 2^w$
- Signed: modified multiplication $\text{mod } 2^w$ (result in proper range)

Arithmetic: Basic Rules

- **Unsigned ints, 2’s complement ints are isomorphic rings:**
 isomorphism = casting

- **Left shift**
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift

- **Right shift**
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Properties of Unsigned Arithmetic

Unsigned multiplication with addition forms commutative ring

- Addition is commutative group
- Closed under multiplication
 \[0 \leq UMultw(u,v) \leq 2^w -1 \]
- Multiplication Commutative
 \[UMultw(u,v) = UMultw(v,u) \]
- Multiplication is Associative
 \[UMultw(t,UMultw(u,v)) = UMultw(UMultw(t,u),v) \]
- 1 is multiplicative identity
 \[UMultw(u,1) = u \]
- Multiplication distributes over addition
 \[UMultw(t,UAddw(u,v)) = UAddw(UMultw(t,u),UMultw(t,v)) \]
Properties of Two’s Comp. Arithmetic

- Isomorphichic algebras
 - Unsigned multiplication and addition
 - Truncating to w bits
 - Two’s complement multiplication and addition
 - Truncating to w bits

- Both form rings
 - Isomorphic to ring of integers $\mod 2^w$

- Comparison to (mathematical) integer arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,
 \[u > 0 \quad \Rightarrow \quad u + v > v \]
 \[u > 0, \quad v > 0 \quad \Rightarrow \quad u \cdot v > 0 \]
 - These properties are not obeyed by two’s comp. arithmetic
 \[T_{\text{Max}} + 1 \quad == \quad T_{\text{Min}} \]
 \[15213 \times 30426 == -10030 \quad (16\text{-bit words}) \]
Why Should I Use Unsigned?

- Practice Problem 2.23
- **Don’t** use just because number nonnegative
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
    ```
- **Do** use when performing modular arithmetic
 - Multiprecision arithmetic
- **Do** use when using bits to represent sets
 - Logical right shift, no sign extension
Integer C Puzzles

- \(x < 0 \) \(\implies \) \((x*2) < 0\)
- \(ux \geq 0 \)
- \(x & 7 == 7 \) \(\implies \) \((x<<30) < 0\)
- \(ux > -1 \)
- \(x > y \) \(\implies \) \(-x < -y\)
- \(x * x \geq 0 \)
- \(x > 0 \) \&\& \(y > 0 \) \(\implies \) \(x + y > 0 \)
- \(x >= 0 \) \(\implies \) \(-x \leq 0\)
- \(x <= 0 \) \(\implies \) \(-x \geq 0\)
- \((x|-x)>>31 == -1 \)
- \(ux >> 3 == ux/8 \)
- \(x >> 3 == x/8 \)
- \(x & (x-1) != 0 \)

Initialization

\[
\begin{align*}
\text{int } x &= \text{foo}(); \\
\text{int } y &= \text{bar}(); \\
\text{unsigned } ux &= x; \\
\text{unsigned } uy &= y;
\end{align*}
\]