BITS, BYTES, AND INTEGERS

Spring, 2015
Euiseong Seo
(euiseong@skku.edu)
BITS, BYTES, AND INTEGERS

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Binary Representations
ENCODING BYTE VALUES

- Byte = 8 bits
 - Binary 00000000_2 to 11111111_2
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write $FA1D37B_{16}$ in C as
 - 0xFA1D37B
 - 0xfa1d37b

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Programs refer to virtual addresses
- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + run-time system control allocation
- Where different program objects should be stored
- All allocation within single virtual address space
Machine Words

- Machine has “Word Size”
 - Nominal size of integer-valued data
 - Including addresses
 - Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - High-end systems use 64 bits (8 bytes) words
 - Potential address space \(\approx 1.8 \times 10^{19} \) bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
WORD-ORIENTED MEMORY ORGANIZATION

Addresses specify byte locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
DATA SIZES

Computer and compiler support multiple data formats

- Using different ways to encode data
 - Integers and floating point
- Using different lengths
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
BYTE ORDERING

► A multi-byte object is stored as a contiguous sequence of bytes
 ○ With a address of the object given by the smallest address of the bytes

► How should bytes within a multi-byte word be ordered in memory?

► Conventions
 ○ Big Endian: Sun, PPC Mac, Internet
 • Least significant byte has highest address
 ○ Little Endian: x86
 • Least significant byte has lowest address
Byte Ordering Example

- **Big Endian**
 - Least significant byte has highest address

- **Little Endian**
 - Least significant byte has lowest address

- **Example**
 - Variable `x` has 4-byte representation `0x01234567`
 - Address given by `&x` is `0x100`

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
READING BYTE-REVERSED LISTINGS

- Disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code

- Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- Deciphering Numbers
 - Value: 0x12ab
 - Pad to 32 bits: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
EXAMINING DATA REPRESENTATIONS

- Code to print byte representation of data
 - Textbook Figure 2.4 at page 42
 - Casting pointer to `unsigned char *` creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
  int i;
  for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n", start+i, start[i]);
  printf("\n");
}
```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux):

<table>
<thead>
<tr>
<th>int a = 15213;</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x11fffffb8 0x6d</td>
</tr>
<tr>
<td>0x11fffffc9 0x3b</td>
</tr>
<tr>
<td>0x11fffffc0a 0x00</td>
</tr>
<tr>
<td>0x11fffffcbb 0x00</td>
</tr>
</tbody>
</table>
Representing Integers

int A = 15213;

Dec: 15213

Bin: 0011 1011 0110 1101

Hex: 3 B 6 D

int B = -15213;

Dec: 15213

Bin: 0011 1011 0110 1101

Hex: 3 B 6 D

long int C = 15213;

Dec: 15213

Bin: 0011 1011 0110 1101

Hex: 3 B 6 D

Two’s complement representation
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th>Sun</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td>D4</td>
<td>0C</td>
</tr>
<tr>
<td>FF</td>
<td>F8</td>
<td>89</td>
</tr>
<tr>
<td>FB</td>
<td>FF</td>
<td>EC</td>
</tr>
<tr>
<td>2C</td>
<td>BF</td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects.
Representing Strings

- Strings in C
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- Compatibility
 - Byte ordering not an issue

char S[6] = "18243";
MACHINE-LEVEL CODE REPRESENTATION

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)
- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
For this example, Alpha & Sun use two 4-byte instructions
- Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

```c
int sum(int x, int y)
{
    return x+y;
}
```

Different machines use totally different instructions and encodings
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

<table>
<thead>
<tr>
<th>and</th>
<th>or</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&B = 1 when both A=1 and B=1</td>
<td>A</td>
</tr>
<tr>
<td>&</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- not
 - ~A = 1 when A=0

<table>
<thead>
<tr>
<th>~</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- exclusive-or (xor)
 - A^B = 1 when either A=1 or B=1, but not both

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
GENERAL BOOLEAN ALGEBRAS

- Operate on Bit Vectors
 - Operations applied bitwise

\[
\begin{array}{c}
01101001 \\
\& 01010101 \\
\hline
01000001
\end{array}
\quad
\begin{array}{c}
01101001 \\
| 01010101 \\
\hline
01111101
\end{array}
\quad
\begin{array}{c}
01101001 \\
^ 01010101 \\
\hline
00111100
\end{array}
\quad
\begin{array}{c}
\sim 01010101
\end{array}
\]

- All of the Properties of Boolean Algebra Apply
BIT-LEVEL OPERATIONS IN C

- Operations `&`, `|`, `~`, `^` available in C
 - Apply to any “integral” data type
 - `long`, `int`, `short`, `char`, `unsigned`
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (char data type)
 - `~0x41 ➔ 0xBE`
 - `~01000001_2 ➔ 10111110_2`
 - `~0x00 ➔ 0xFF`
 - `~00000000_2 ➔ 11111111_2`
 - `0x69 & 0x55 ➔ 0x41`
 - `01101001_2 & 01010101_2 ➔ 01000001_2`
 - `0x69 | 0x55 ➔ 0x7D`
 - `01101001_2 | 01010101_2 ➔ 01111101_2`
Logic Operations in C

Contrast to Logical Operators

- &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 → 0x00
- !0x00 → 0x01
- !!0x41 → 0x01
- 0x69 && 0x55 → 0x01
- 0x69 || 0x55 → 0x01
- p && *p (avoids null pointer access)
SHIFT OPERATIONS

- Left Shift: \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- Right Shift: \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right

- Undefined Behavior
 - Shift amount < 0 or \(\geq \) word size

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td><< 3</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td><< 3</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Cool Stuff with XOR

- Bitwise XOR is a form of addition.
- With extra property that every value is its own additive inverse:
 - $A \oplus A = 0$

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y; /* #1 */
    *y = *x ^ *y; /* #2 */
    *x = *x ^ *y; /* #3 */
}
```

<table>
<thead>
<tr>
<th></th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A^B</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A^B</td>
<td>(A^B) ^B = A</td>
</tr>
<tr>
<td>3</td>
<td>(A^B) ^A = B</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
SUMMARY

► It’s all about bits & bytes
 ○ Numbers
 ○ Programs
 ○ Text

► Different machines follow different conventions
 ○ Word size
 ○ Byte ordering
 ○ Representations and encoding

► Boolean algebra is mathematical basis
 ○ Basic form encodes “false” as 0, “true” as 1
 ○ General form like bit-level operations in C
 • Good for representing & manipulating sets
BITS, BYTES, AND INTEGERS

► Representing information as bits
► Bit-level manipulations
► Integers
 o Representation: unsigned and signed
 o Conversion, casting
 o Expanding, truncating
 o Addition, negation, multiplication, shifting

► Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- **C short 2 bytes long**

- **Sign Bit**
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>
Encoding Example

\[x = 15213: 00111011 \ 01101101 \]
\[y = -15213: 11000100 \ 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum \[15213 \] \[-15213 \]
NUMERIC RANGES

- **Unsigned Values**
 - **UMin** = 0
 - 000...0
 - **UMax** = \(2^w - 1\)
 - 111...1

- **Two’s Complement Values**
 - **TMin** = \(-2^{w-1}\)
 - 100...0
 - **TMax** = \(2^{w-1} - 1\)
 - 011...1

- **Other Values**
 - **Minus 1**
 - 111...1

Values for w = 16

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>TMax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>TMin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
VALUES FOR DIFFERENT WORD SIZES

<table>
<thead>
<tr>
<th></th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>UMax</td>
<td>255</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
</tr>
</tbody>
</table>

- Observations
 - $|\text{TMin}| = \text{TMax} + 1$
 - Asymmetric range
 - $\text{UMax} = 2 \times \text{TMax} + 1$

- C Programming
 - `#include <limits.h>`
 - Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
 - Values platform specific
UNSIGNED & SIGNED NUMERIC VALUES

- Equivalence
 - Same encodings for nonnegative values

- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

⇒ Can invert mappings
 - U2B(x) = B2U⁻¹(x)
 - Bit pattern for unsigned integer
 - T2B(x) = B2T⁻¹(x)
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Mappings between Signed & Unsigned

- Two’s Complement
 - x → T2B → B2U → ux
 - Maintain Same Bit Pattern

- Unsigned
 - ux → U2B → B2T → x
 - Maintain Same Bit Pattern

- Mappings between unsigned and two’s complement numbers
 - Keep bit representations and reinterpret
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

=

+/- 16
Relation between Signed & Unsigned

Two’s Complement \(\xrightarrow{T2U} \) Unsigned

- **T2U**: Convert to unsigned
- **T2B**: Convert to two’s complement
- **B2U**: Convert back to unsigned

Function: \(ux = \begin{cases}
 x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases} \)

- Large negative weight becomes large positive weight.

- **T2U**: Convert to unsigned
- **T2B**: Convert to two’s complement
- **B2U**: Convert back to unsigned

Function: \(ux = \begin{cases}
 x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases} \)

- Large negative weight becomes large positive weight.
CONVERSION VISUALIZED

> 2’s Comp. → Unsigned

- Ordering Inversion
- Negative → Big Positive

2’s Complement Range

0

TMax

TMin

-2

-1

0

UMax

UMax – 1

TMax + 1

TMax

Unsigned Range
SIGNED VS. UNSIGNED IN C

► Constants
 ○ By default are considered to be signed integers
 ○ Unsigned if have “U” as suffix
 • 0U, 4294967259U

► Casting
 ○ Explicit casting between signed & unsigned same as U2T and T2U
 • int tx, ty;
 • unsigned ux, uy;
 • tx = (int) ux;
 • uy = (unsigned) ty;
 ○ Implicit casting also occurs via assignments and procedure calls
 • tx = ux;
 • uy = ty;
CASTING SURPRISES

Expression Evaluation

- If there is a mix of unsigned and signed in single expression
 - Signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Example \(W = 32; \text{TMIN} = -2,147,483,648; \text{TMAX} = 2,147,483,647 \)

<table>
<thead>
<tr>
<th>Constant(_1)</th>
<th>Constant(_2)</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Casting Basic Rules

- Bit pattern is maintained
 - But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!
TODAY: BITS, BYTES, AND INTEGERS

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
SIGN EXTENSION

- **Task:**
 - Given w-bit signed integer x
 - Convert it to $w+k$-bit integer with same value

- **Rule:**
 - Make k copies of sign bit:
 - $X = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$

![Diagram showing sign extension process](image)
SIGN EXTENSION EXAMPLE

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15123</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15123</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15123</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15123</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Justification for Sign Extension

- Prove correctness by induction on k
 - Induction step
 - Extending by single bit maintains value

- Key observation: $-2^w = -2^{w+1} + 2^w$
TRUNCATING NUMBERS

- Truncating a number can alter its value
 - A form of overflow
- For an unsigned number of x
 - Result of truncating it to k bits is equivalent to computing $x \mod 2^k$

```c
int x = 50323;
short int ux = (short) x; // -15213
int y = sx; // -15213
```

$$B_{2U_k}([x_k, x_{k-1}, \ldots, x_0]) = B_{2U_w}([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k$$

$$B_{2T_k}([x_k, x_{k-1}, \ldots, x_0]) = U_{2T_k}(B_{2U_w}([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k)$$
Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior
ADVICE ON SIGNED AND UNSIGNED

- Implicit conversion of signed to unsigned
 - Can lead to error or vulnerabilities

- Be careful when using unsigned numbers
 - Java supports only signed integers
 - `>>`: arithmetic shift
 - `>>>`: logical shift
TODAY: BITS, BYTES, AND INTEGERS

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Negation: Complement & Increment

- Claim: following holds for 2’s complement
 \[\sim x + 1 = -x \]

- Complement
 - Observation: \[\sim x + x = 1111\ldots111_2 = -1 \]

- Increment
 - \[\sim x + x + (-x + 1) = -1 + (-x + 1) \]
 - \[\sim x + 1 = -x \]
Complement & Increment Examples

$x = 15213$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B</td>
<td>6D 00111011 01101101</td>
</tr>
<tr>
<td>$\neg x$</td>
<td>-15214</td>
<td>C4</td>
<td>92 11000100 10010010</td>
</tr>
<tr>
<td>$\neg x + 1$</td>
<td>-15213</td>
<td>C4</td>
<td>93 11000100 10010011</td>
</tr>
<tr>
<td>$-x$</td>
<td>-15213</td>
<td>C4</td>
<td>93 11000100 10010011</td>
</tr>
</tbody>
</table>

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>00 00000000 00000000</td>
</tr>
<tr>
<td>$\neg 0$</td>
<td>-1</td>
<td>FF</td>
<td>FF 11111111 11111111</td>
</tr>
<tr>
<td>$\neg 0 + 1$</td>
<td>0</td>
<td>00</td>
<td>00 00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>True Sum: w+1 bits</th>
<th>Discard Carry: w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>+ v</td>
<td>UAdd<sub>w</sub>(u, v)</td>
</tr>
<tr>
<td>[u + v]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Standard addition function**
 - Ignores CARRY output
- **Implements modular arithmetic**
 \[s = UAdd_w(u, v) = u + v \mod 2^w \]

\[
UAdd_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
VISUALIZING INTEGER ADDITION

- 4-bit integers u, v
- Compute true sum $\text{Add}_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

True Sum

- 2^{w+1}
- 2^w
- 0

Modular Sum

- Overflow

$UAdd_4(u, v)$

Overflow
Mathematical Properties of $U\text{Add}$

- Modular Addition Forms an *Abelian Group*
 - **Closed** under addition
 \[0 \leq U\text{Add}_w(u,v) \leq 2^w - 1 \]
 - **Commutative**
 \[U\text{Add}_w(u,v) = U\text{Add}_w(v,u) \]
 - **Associative**
 \[U\text{Add}_w(t,U\text{Add}_w(u,v)) = U\text{Add}_w(U\text{Add}_w(t,u),v) \]
 - **0 is additive identity**
 \[U\text{Add}_w(u,0) = u \]
 - Every element has additive **inverse**
 - Let
 \[U\text{Comp}_w(u) = 2^w - u \]
 \[U\text{Add}_w(u,U\text{Comp}_w(u)) = 0 \]
Two’s Complement Addition

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u) [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}]</th>
<th>+</th>
<th>(v) [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}]</th>
<th>True Sum: (w+1) bits</th>
<th>(u + v) [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}]</th>
<th>Discard Carry: (w) bits</th>
<th>(\text{TAdd}_w(u, v)) [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}] [\begin{array}{c} \ldots \end{array}]</th>
</tr>
</thead>
</table>

- **TAdd** and **UAdd** have identical bit-level behavior
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int)((unsigned)u + (unsigned)v);
    t = u + v
    ```
 - Will give \(s == t \)
TAdd Overflow

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s complement integer

![Diagram showing True Sum and TAdd Result](image)
VISUALIZING 2’S COMPLEMENT ADDITION

- Values
 - 4-bit two’s comp.
 - Range from -8 to +7

- Wraps around
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
CHARACTERIZING \text{TAdd}

\textbf{Functionality}

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s complement integer

\begin{align*}
\text{TAdd}(u,v) &= \begin{cases}
 u + v + 2^w, & u + v < T \min_w \\
 u + v, & T \min_w \leq u + v \leq T \max_w \\
 u + v - 2^w, & T \max_w \leq u + v
\end{cases} \\
\text{NegOver} &\quad \text{PosOver}
\end{align*}
Mathematical Properties of TAdd

- Isomorphic group to unsigned with UAdd
 - $TAdd_w(u,v) = U2T(UAdd_w(T2U(u),T2U(v)))$
 - Since both have identical bit patterns

- Two’s complement under TAdd forms a group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse
 - Let
 - $TComp_w(u) = U2T(UComp_w(T2U(u)))$
 - $TAdd_w(u,TComp_w(u)) = 0$

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$
Multiplication

- Computing exact product of \(w \)-bit numbers \(x, y \)
 - Either signed or unsigned

- Ranges
 - Unsigned: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Up to \(2w \) bits
 - Two’s complement min:
 \[x \times y \geq (-2^{w-1}) \times (2^{w-1}-1) = -2^{2w-2} + 2^{w-1} \]
 - Up to \(2w-1 \) bits
 - Two’s complement max: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \)
 - Up to \(2w \) bits, but only for \((\text{TMin}_w)^2\)

- Maintaining exact results
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u)</th>
<th>(u \cdot v)</th>
<th>(\ast)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Product: (2\ast w) bits</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>Discard: (w) bits</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

- **Standard multiplication function**
 - Ignores high order \(w \) bits
- **Implements modular arithmetic**
 - \(\text{UMult}_w(u,v) = u \cdot v \mod 2^w \)
CODE SECURITY EXAMPLE #2

- **SUN XDR library**
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

Diagram:
- `ele_src`
- `malloc(ele_cnt*ele_size)`
- Allocation and copying of elements
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL)
 /* malloc failed */
 return NULL;
 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
XDR Vulnerability

What if:

- ele_cnt = $2^{20} + 1$
- ele_size = 4096
- Allocation = ??

How can I make this function secure?
Signed Multiplication in C

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>$u \cdot v$</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Product: $2w$ bits</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>Discard: w bits</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Standard Multiplication Function
- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same
Unsigned vs. Signed Multiplication

- **Unsigned multiplication**

 unsigned ux = (unsigned) x;
 unsigned uy = (unsigned) y;
 unsigned up = ux * uy

 - Truncates product to w-bit number
 up = UMultw(ux, uy)

 - Modular arithmetic
 up = ux * uy \mod 2^w

- **Two’s Complement Multiplication**

 int x, y;
 int p = x * y;

 - Compute exact product of two w-bit numbers x, y

 - Truncate result to w-bit number $p = TMultw(x, y)$
Power-of-2 Multiply with Shift

- **Operation**
 - \(u \ll k \) gives \(u \times 2^k \)
 - Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>True Product: (w + k) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u \times 2^k)</td>
<td>Discard (k) bits: (w) bits</td>
</tr>
<tr>
<td>(u \ll k)</td>
<td>(\text{UMult}_w(u, 2^k))</td>
</tr>
<tr>
<td>(u \ll 3)</td>
<td>(\text{TMult}_w(u, 2^k))</td>
</tr>
</tbody>
</table>

- **Examples**
 - \(u \ll 3 \equiv u \times 8 \)
 - \(u \ll 5 - u \ll 3 \equiv u \times 24 \)
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically
C compiler automatically generates shift/add code when multiplying by constant

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

- `leal (%eax,%eax,2), %eax`
- `sall $2, %eax`

Explanation

- `t <- x+x*2`
- `return t << 2;`
Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned by power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

Operands:

\[
\begin{array}{c}
\text{u} \\
\hline
\text{/} \quad 2^k \\
\hline
\text{u} / 2^k \\
\hline
\end{array}
\]

Division:

\[
\begin{array}{c}
\text{u} \\
\hline
\text{/} \quad 2^k \\
\hline
\text{u} / 2^k \\
\hline
\end{array}
\]

Result:

\[
\begin{array}{c}
\lfloor u / 2^k \rfloor \\
\hline
\text{Binary Point} \\
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
C Function

```c
unsigned udiv8(unsigned x) {
    return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

<table>
<thead>
<tr>
<th>Operands: $x / 2^k$</th>
<th>Result: $\text{RoundDown}(x / 2^k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>$\text{RoundDown}(x / 2^k)$</td>
</tr>
<tr>
<td>Binary Point</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>-15213 C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>-7607 E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>-951 FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>-60 FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want \(\left\lceil \frac{x}{2^k} \right\rceil \) (Round Toward 0)
- \(\left\lceil \frac{x}{y} \right\rceil = \left\lfloor \frac{x + y - 1}{y} \right\rfloor \)
- \(\left\lceil \frac{x}{2^k} \right\rceil = \left\lfloor \frac{x + 2^k - 1}{2^k} \right\rfloor \)
- Compute as \(\left\lfloor \frac{x + 2^k - 1}{2^k} \right\rfloor \)
 - In C: \((x + (1 << k) - 1) >> k\)
 - Biases dividend toward 0

Case 1: No rounding

<table>
<thead>
<tr>
<th>Bias: (+2^k - 1)</th>
<th>Dividend: (\frac{u}{2^k})</th>
<th>Divisor: (2^k)</th>
<th>(\left\lceil \frac{u}{2^k} \right\rceil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [\cdots] 0</td>
<td>1 [\cdots] 1</td>
<td>0 [\cdots] 0</td>
<td>1 [\cdots] 1</td>
</tr>
<tr>
<td>0 [\cdots] 1</td>
<td>0 [\cdots] 1</td>
<td>0 [\cdots] 0</td>
<td>1 [\cdots] 1</td>
</tr>
<tr>
<td>0 [\cdots] 0</td>
<td>1 [\cdots] 0</td>
<td>0 [\cdots] 0</td>
<td>1 [\cdots] 1</td>
</tr>
</tbody>
</table>

Binary Point

Biasing has no effect
CORRECT POWER-OF-2 DIVIDE (CONT.)

Case 2: Rounding

Biasing adds 1 to final result
Compiled Signed Division Code

C Function

```c
int idiv8(int x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```assembly
testl  %eax, %eax
js    L4
L3:
    sarl $3, %eax
    ret
L4:
    addl $7, %eax
    jmp  L3
```

Explanation

- Uses arithmetic shift for int
- For Java Users
 - Arithmetic shift written as `>>`

```java
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```
ARITHMETIC: BASIC RULES

▶ **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition $\text{mod } 2^w$
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition $\text{mod } 2^w$ (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

▶ **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication $\text{mod } 2^w$
 - Signed: modified multiplication $\text{mod } 2^w$ (result in proper range)
ARITHMETIC: BASIC RULES

- Unsigned ints, 2’s complement ints are isomorphic rings: isomorphism = casting
- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift
- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
TODAY: INTEGERS

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Properties of Unsigned Arithmetic

- Unsigned multiplication with addition forms commutative ring
 - Addition is commutative group
 - Closed under multiplication
 \[0 \leq U\text{Mult}_w(u,v) \leq 2^w - 1 \]
 - Multiplication Commutative
 \[U\text{Mult}_w(u,v) = U\text{Mult}_w(v,u) \]
 - Multiplication is Associative
 \[U\text{Mult}_w(t,U\text{Mult}_w(u,v)) = U\text{Mult}_w(U\text{Mult}_w(t,u),v) \]
 - 1 is multiplicative identity
 \[U\text{Mult}_w(u,1) = u \]
 - Multiplication distributes over addition
 \[U\text{Mult}_w(t,U\text{Add}_w(u,v)) = U\text{Add}_w(U\text{Mult}_w(t,u),U\text{Mult}_w(t,v)) \]
PROPERTIES OF TWO’S COMP. ARITHMETIC

► Isomorphic algebras
 o Unsigned multiplication and addition
 • Truncating to \(w \) bits
 o Two’s complement multiplication and addition
 • Truncating to \(w \) bits

► Both form rings
 o Isomorphic to ring of integers \(\text{mod } 2^w \)

► Comparison to (mathematical) integer arithmetic
 o Both are rings
 o Integers obey ordering properties, e.g.,
 \[
 \begin{align*}
 u > 0 & \implies u + v > v \\
 u > 0, \ v > 0 & \implies u \cdot v > 0
 \end{align*}
 \]
 o These properties are not obeyed by two’s comp. arithmetic
 \[
 \begin{align*}
 \text{TMax} + 1 & = \text{TMin} \\
 15213 \times 30426 & = -10030 \quad (16\text{-bit words})
 \end{align*}
 \]
WHY SHOULD I USE UNSIGNED?

▶ Practice Problem 2.23

▶ **Don’t** use just because number nonnegative
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
      a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
    ```

▶ **Do** use when performing modular arithmetic
 - Multiprecision arithmetic

▶ **Do** use when using bits to represent sets
 - Logical right shift, no sign extension
INTEGER C PUZZLES

- \(x < 0 \) \(\Rightarrow \) \(((x*2) < 0) \)
- \(ux >= 0 \)
- \(x & 7 == 7 \) \(\Rightarrow \) \((x<<30) < 0 \)
- \(ux > -1 \)
- \(x > y \) \(\Rightarrow \) \(-x < -y \)
- \(x * x >= 0 \)
- \(x > 0 && y > 0 \) \(\Rightarrow \) \(x + y > 0 \)
- \(x >= 0 \) \(\Rightarrow \) \(-x <= 0 \)
- \(x <= 0 \) \(\Rightarrow \) \(-x >= 0 \)
- \((x|-x)>>31 == -1 \)
- \(ux >> 3 == ux/8 \)
- \(x >> 3 == x/8 \)
- \(x & (x-1) != 0 \)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```