Bits, Bytes, and Integers

Spring, 2016
Euiseong Seo
(euiseong@skku.edu)
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Binary Representations

![Diagram showing binary representation of voltages]

- 0
- 1

Voltages:
- 3.3V
- 2.8V
- 0.5V
- 0.0V
Encoding Byte Values

- **Byte = 8 bits**
 - Binary 00000000_2 to 11111111_2
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B16 in C as
 - 0xFA1D37B
 - 0xfa1d37b

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Programs refer to virtual addresses
- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + run-time system control allocation
- Where different program objects should be stored
- All allocation within single virtual address space
Machine has “Word Size”

- Nominal size of integer-valued data
 - Including addresses
- Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8×10^{19} bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Addresses specify byte locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data Sizes

- Computer and compiler support multiple data formats
 - Using different ways to encode data
 - Integers and floating point
 - Using different lengths
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

- A multi-byte object is stored as a contiguous sequence of bytes
 - With an address of the object given by the smallest address of the bytes

- How should bytes within a multi-byte word be ordered in memory?

- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address
Byte Ordering Example

- **Big Endian**
 - Least significant byte has highest address

- **Little Endian**
 - Least significant byte has lowest address

- **Example**
 - Variable x has 4-byte representation `0x01234567`
 - Address given by `&x` is `0x100`

<table>
<thead>
<tr>
<th></th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Endian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
<tr>
<td>Little Endian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
READING BYE-REVERSED LISTINGS

- Disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code

- Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmp $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- Deciphering Numbers
 - Value: 0x12ab
 - Pad to 32 bits: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
Examining Data Representations

Code to print byte representation of data

- Textbook Figure 2.4 at page 42
- Casting pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux):

<table>
<thead>
<tr>
<th>Value</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>int a = 15213;</td>
<td>0x11fffffcb8 0x6d</td>
</tr>
<tr>
<td>0x11fffffcb9</td>
<td>0x3b</td>
</tr>
<tr>
<td>0x11fffffcbba</td>
<td>0x00</td>
</tr>
<tr>
<td>0x11fffffcbbb</td>
<td>0x00</td>
</tr>
</tbody>
</table>
Representing Integers

- **Decimal:** 15213
- **Binary:** 0011 1011 0110 1101
- **Hex:** 3 B 6 D

```plaintext
int A = 15213;

int B = -15213;

long int C = 15213;
```

Two’s complement representation
Representing Pointers

C Code:

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th></th>
<th>Sun</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td></td>
<td>D4</td>
<td>0C</td>
</tr>
<tr>
<td>FF</td>
<td></td>
<td>F8</td>
<td>89</td>
</tr>
<tr>
<td>FB</td>
<td></td>
<td>FF</td>
<td>EC</td>
</tr>
<tr>
<td>2C</td>
<td></td>
<td>BF</td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects.
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```c
char S[6] = "18243";
```
Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch

Instructions encoded as bytes
- Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
- PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)

Different instruction types and encodings for different machines
- Most code not binary compatible

Programs are Byte Sequences Too!
Representing Instructions

- For this example, Alpha & Sun use two 4-byte instructions
 - Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

<table>
<thead>
<tr>
<th>Alpha sum</th>
<th>Sun sum</th>
<th>PC sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 30 42 01 80 FA 6B</td>
<td>81 C3 E0 08 90 02 00 09</td>
<td>55 89 E5 8B 45 0C 03 45 08 89 EC 5D C3</td>
</tr>
</tbody>
</table>

```c
int sum(int x, int y) {
    return x+y;
}
```

Different machines use totally different instructions and encodings
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

<table>
<thead>
<tr>
<th>and</th>
<th>or</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&B = 1 when both A=1 and B=1</td>
<td>A</td>
</tr>
<tr>
<td>&</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>not</th>
<th>exclusive-or (xor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~A = 1 when A=0</td>
<td>A^B = 1 when either A=1 or B=1, but not both</td>
</tr>
<tr>
<td>~</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Operate on Bit Vectors

- Operations applied bitwise

\[
\begin{array}{c}
01101001 \\
& 01010101 \\
\hline
01000001
\end{array} \quad \begin{array}{c}
01101001 \\
| 01010101 \\
\hline
01111101
\end{array} \quad \begin{array}{c}
01101001 \\
^ 01010101 \\
\hline
00111100
\end{array} \quad \begin{array}{c}
01010101 \\
~ 01010101 \\
\hline
10101010
\end{array}
\]

All of the Properties of Boolean Algebra Apply
Bit-Level Operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (char data type)
 - ~0x41 ➞ 0xBE
 - ~01000001₂ ➞ 10111110₂
 - ~0x00 ➞ 0xFF
 - ~00000000₂ ➞ 11111111₂
 - 0x69 & 0x55 ➞ 0x41
 - 01101001₂ & 01010101₂ ➞ 01000001₂
 - 0x69 | 0x55 ➞ 0x7D
 - 01101001₂ | 01010101₂ ➞ 01111101₂
Logic Operations in C

Contrast to Logical Operators

- &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 ➔ 0x00
- !0x00 ➔ 0x01
- !!0x41 ➔ 0x01
- 0x69 && 0x55 ➔ 0x01
- 0x69 || 0x55 ➔ 0x01
- p && *p (avoids null pointer access)
Shift Operations

► Left Shift: \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

► Right Shift: \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right

► Undefined Behavior
 - Shift amount < 0 or \(\geq \) word size
Cool Stuff with XOR

- Bitwise **xor** is a form of addition.
- With extra property that every value is its own additive inverse:
 - $A \oplus A = 0$

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y; /* #1 */
    *y = *x ^ *y; /* #2 */
    *x = *x ^ *y; /* #3 */
}
```

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A^B</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A^B</td>
<td>(A^B)^B = A</td>
</tr>
<tr>
<td>3</td>
<td>(A^B)^A = B</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
SUMMARY

► It’s all about bits & bytes
 ○ Numbers
 ○ Programs
 ○ Text

► Different machines follow different conventions
 ○ Word size
 ○ Byte ordering
 ○ Representations and encoding

► Boolean algebra is mathematical basis
 ○ Basic form encodes “false” as 0, “true” as 1
 ○ General form like bit-level operations in C
 • Good for representing & manipulating sets
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
C short 2 bytes long

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- **Sign Bit**
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example

\[x = 15213: 00111011 01101101 \]
\[y = -15213: 11000100 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum

<table>
<thead>
<tr>
<th></th>
<th>Sum 15213</th>
<th>Sum -15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>15213</td>
<td>-15213</td>
</tr>
</tbody>
</table>
Numeric Ranges

- **Unsigned Values**
 - $\text{UMin} = 0 \cdot 000...0$
 - $\text{UMax} = 2^w - 1 \cdot 111...1$

- **Two’s Complement Values**
 - $\text{TMin} = -2^{w-1} \cdot 100...0$
 - $\text{TMax} = 2^{w-1} - 1 \cdot 011...1$

- **Other Values**
 - Minus 1
 - $111...1$

Values for $w = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>UMax</td>
<td>255</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
</tr>
</tbody>
</table>

Observations
- $|\text{TMin}| = \text{TMax} + 1$
 - Asymmetric range
- $\text{UMax} = 2 \times \text{TMax} + 1$

C Programming
- `#include <limits.h>`
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform specific
Unsigned & Signed Numeric Values

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **⇒ Can invert mappings**
 - $U_2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

<table>
<thead>
<tr>
<th>X</th>
<th>$B2U(X)$</th>
<th>$B2T(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Mappings between unsigned and two’s complement numbers

- Keep bit representations and reinterpret

Two’s Complement

Unsigned

Maintain Same Bit Pattern

Mappings between unsigned and two’s complement numbers

- Keep bit representations and reinterpret
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Relation between Signed & Unsigned

Two’s Complement → Unsigned

Maintain Same Bit Pattern

ux = \begin{cases}
x & x \geq 0 \\
2^w x & x < 0
\end{cases}

Large negative weight becomes Large positive weight
2’s Comp. → Unsigned

- Ordering Inversion
- Negative → Big Positive
Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - 0U, 4294967259U

- Casting
 - Explicit casting between signed & unsigned same as U2T and T2U
 - int tx, ty;
 - unsigned ux, uy;
 - tx = (int) ux;
 - uy = (unsigned) ty;
 - Implicit casting also occurs via assignments and procedure calls
 - tx = ux;
 - uy = ty;
Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression
 - Signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Example \(w = 32; \text{TMIN} = -2,147,483,648; \text{TMAX} = 2,147,483,647 \)

<table>
<thead>
<tr>
<th>Constant(_1)</th>
<th>Constant(_2)</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Casting Basic Rules

- Bit pattern is maintained
 - But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Sign Extension

Task:
- Given w-bit signed integer x
- Convert it to $w+k$-bit integer with same value

Rule:
- Make k copies of sign bit:
 - $X = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$

```
    X
    ⋮
    \[ k \text{ copies of MSB} \]
```

```
    \[ k \quad w \quad w \]
```
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15123</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15123</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15123</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15123</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Prove correctness by induction on k

- Induction step
 - Extending by single bit maintains value

Key observation: $-2^w = -2^{w+1} + 2^w$
Truncating Numbers

- Truncating a number can alter its value
 - A form of overflow
- For an unsigned number of x
 - Result of truncating it to k bits is equivalent to computing $x \mod 2^k$

```c
int x = 50323;
short int ux = (short) x;  // -15213
int y = sx;               // -15213
```

\[
B2U_k([x_k, x_{k-1}, \ldots, x_0]) = B2U_w([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k
\]

\[
B2T_k([x_k, x_{k-1}, \ldots, x_0]) = U2T_k(B2U_w([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k)
\]
Expanding (e.g., short int to int)
- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result

Truncating (e.g., unsigned to unsigned short)
- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small numbers yields expected behavior
ADVICE ON SIGNED AND UNSIGNED

- Implicit conversion of signed to unsigned
 - Can lead to error or vulnerabilities

- Be careful when using unsigned numbers
 - Java supports only signed integers
 - >> : arithmetic shift
 - >>> : logical shift
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Claim: following holds for 2’s complement

\[\sim x + 1 = -x \]

Complement

Observation: \[\sim x + x = 1111...111_2 = -1 \]

\[
\begin{array}{c}
\text{x} & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
+ \sim x & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
-1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Increment

\[\sim x + x + (-x + 1) = -1 + (-x + 1) \]

\[\sim x + 1 = -x \]
Complement & Increment Examples

x = 15213

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>~x</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>~x+1</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>-x</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

x = 0

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>~0+1</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
UNSIGNED ADDITION

Operands: \(w \) bits

\[
\begin{array}{c}
\text{ } \\
\hline
u \\
+ \\
v \\
\hline
u + v
\end{array}
\]

True Sum: \(w+1 \) bits

\[
\begin{array}{c}
\text{ } \\
\hline
u + v
\end{array}
\]

Discard Carry: \(w \) bits

\[
\begin{array}{c}
\text{ } \\
\hline
\text{UAdd}_w(u, v)
\end{array}
\]

- Standard addition function
 - Ignores CARRY output
- Implements modular arithmetic

\[
s = \text{UAdd}_w(u, v) = u + v \mod 2^w
\]

\[
\text{UAdd}_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing Integer Addition

- 4-bit integers u, v
- Compute true sum \(\text{Add}_4(u, v) \)
- Values increase linearly with u and v
- Forms planar surface
Wraps Around
- If true sum $\geq 2^w$
- At most once

True Sum
- 2^{w+1}
- 2^w
- 0

Modular Sum

Overflow

UAdd$_4(u, v)$

Sungkyunkwan University
Mathematical Properties of UAdd

- Modular Addition Forms an Abelian Group
 - **Closed** under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]
 - **Commutative**
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]
 - **Associative**
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]
 - **0** is additive identity
 \[\text{UAdd}_w(u, 0) = u \]
 - Every element has additive **inverse**
 - Let
 \[\text{UComp}_w(u) = 2^w - u \]
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two's Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
u \\
+ v \\
\hline
u + v
\end{array}
\]

True Sum: \(w+1 \) bits

\[
\begin{array}{c}
u + v
\end{array}
\]

Discard Carry: \(w \) bits

\[
\begin{array}{c}
\text{TAdd}_w(u, v)
\end{array}
\]

- **TAdd** and **UAdd** have identical bit-level behavior
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int)((unsigned)u + (unsigned)v);
    t = u + v
    ```
 - Will give \(s == t \)
True sum requires $w+1$ bits

- Drop off MSB
- Treat remaining bits as 2’s complement integer

\[\begin{align*}
000\ldots0 & \rightarrow -2^w \\
001\ldots1 & \rightarrow 2^w - 1 \\
010\ldots0 & \rightarrow 0 \\
011\ldots1 & \rightarrow 2^w - 1 \\
100\ldots0 & \rightarrow -2^w - 1 \\
101\ldots1 & \rightarrow 011\ldots1 \\
1000\ldots0 & \rightarrow 000\ldots0 \\
1011\ldots1 & \rightarrow 100\ldots0 \\
\end{align*} \]
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Functionality

- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2’s complement integer

\[
TAdd_w(u,v) = \begin{cases}
 u+v+2^w, & u+v < T \min_w \\
 u+v, & T \min_w \leq u+v \leq T \max_w \\
 u+v-2^w, & T \max_w \leq u+v
\end{cases}
\]

Positive Overflow

Negative Overflow
Mathematical Properties of TAdd

- Isomorphic group to unsigned with UAdd
 - \(T\text{Add}_w(u,v) = U2T(U\text{Add}_w(T2U(u),T2U(v))) \)
 - Since both have identical bit patterns

- Two’s complement under TAdd forms a group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse
 - Let
 \[T\text{Comp}_w(u) = U2T(U\text{Comp}_w(T2U(u))) \]
 \[T\text{Add}_w(u,T\text{Comp}_w(u)) = 0 \]

\[
T\text{Comp}_w(u) = \begin{cases}
-u & u \neq T\text{Min}_w \\
T\text{Min}_w & u = T\text{Min}_w
\end{cases}
\]
Multiplication

- Computing exact product of w-bit numbers x, y
 - Either signed or unsigned

- Ranges
 - Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to $2w$ bits
 - Two’s complement min: $x \times y \geq (-2^w-1) \times (2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to $2w-1$ bits
 - Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to $2w$ bits, but only for $(\text{TMin}_w)^2$

- Maintaining exact results
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

- **Standard multiplication function**
 - Ignores high order \(w \) bits

- **Implements modular arithmetic**
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u \cdot v)</th>
<th>(\text{UMult}_w(u, v))</th>
</tr>
</thead>
</table>
| True Product: \(2^*w \) bits
| Discard : \(w \) bits
Code Security Example #2

- **SUN XDR library**
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

Diagram:

- `ele_src` allocation:
 - `malloc(ele_cnt*ele_size)`

- Data transfer diagram:
 - Connections indicating data movement from `ele_src` to allocated memory.
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL) /* malloc failed */
 return NULL;
 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
What if:
- \(\text{ele_cnt} = 2^{20} + 1 \)
- \(\text{ele_size} = 4096 = 2^{12} \)
- Allocation = ??

How can I make this function secure?
Signed Multiplication in C

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u \cdot v)</th>
<th>(\ast) (v)</th>
<th>True Product: (2 \ast w) bits</th>
<th>Discard: (w) bits</th>
<th>TMult(_w)((u, v))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(\cdot)</td>
<td>(\ast)</td>
<td>(\cdot) (\ast) (w)</td>
<td>(\cdot) (\ast) (w)</td>
<td>(\cdot) (\ast) (w)</td>
</tr>
</tbody>
</table>

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
UNSIGNED VS. SIGNED MULTIPLICATION

► Unsigned multiplication

 unsigned ux = (unsigned) x;
 unsigned uy = (unsigned) y;
 unsigned up = ux * uy

 ○ Truncates product to w-bit number
 up = UMultw(ux, uy)

 ○ Modular arithmetic
 up = ux * uy mod 2^w

► Two’s Complement Multiplication

 int x, y;
 int p = x * y;

 ○ Compute exact product of two w-bit numbers x, y

 ○ Truncate result to w-bit number p = TMultw(x, y)
Power-of-2 Multiply with Shift

Operation
- \(u << k \) gives \(u \cdot 2^k \)
- Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>True Product: (w+k) bits</th>
<th>Discard (k) bits: (w) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(u \cdot 2^k)</td>
<td>(\text{UMult}_w(u, 2^k))</td>
</tr>
<tr>
<td>(\ast \ 2^k)</td>
<td></td>
<td>(\text{UMult}_w(u, 2^k))</td>
</tr>
<tr>
<td>(u)</td>
<td></td>
<td>(\text{TMult}_w(u, 2^k))</td>
</tr>
<tr>
<td>(\ast \ 2^k)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples
- \(u << 3 = u \cdot 8 \)
- \(u << 5 - u << 3 = u \cdot 24 \)
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
C compiler automatically generates shift/add code when multiplying by constant

C Function

```c
int mul12(int x) {
    return x*12;
}
```

Compiled Arithmetic Operations

- `leal (%eax,%eax,2), %eax`
- `sall $2, %eax`

Explanation

- `t <- x+x*2`
- `return t << 2;`
Unsigned Power-of-2 Divide with Shift

- **Quotient of unsigned by power of 2**
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
C Function

```c
unsigned udiv8(unsigned x) {
    return x/8;
}
```

Compiled Arithmetic Operations

<table>
<thead>
<tr>
<th>shrl $3, %eax</th>
</tr>
</thead>
<tbody>
<tr>
<td># Logical shift</td>
</tr>
<tr>
<td>return x >> 3;</td>
</tr>
</tbody>
</table>

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

For Java Users

- Logical shift written as >>>
Signed Power-of-2 Divide with Shift

- **Quotient of Signed by Power of 2**
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

![Division Diagram]

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- **Quotient of Negative Number by Power of 2**
 - Want \(\left\lfloor \frac{x}{2^k} \right\rfloor \) (Round Toward 0)
 - \(\left\lfloor \frac{x}{y} \right\rfloor = \left\lfloor \frac{(x + y - 1)}{y} \right\rfloor \)
 - \(\left\lfloor \frac{x}{2^k} \right\rfloor = \left\lfloor \frac{(x + 2^k - 1)}{2^k} \right\rfloor \)
 - Compute as \(\left\lfloor \frac{(x + 2^k - 1)}{2^k} \right\rfloor \)
 - In C: \((x + (1<<k) - 1) >> k \)
 - Biases dividend toward 0

- **Case 1: No rounding**

<table>
<thead>
<tr>
<th>Bias:</th>
<th>Dividend:</th>
<th>Divisor:</th>
<th>(u / 2^k)</th>
<th>Binary Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2^k - 1</td>
<td>1 ... 1 1</td>
<td>0 ... 0 0</td>
<td>1 ... 1 1 1</td>
<td>1 ... 1 1</td>
</tr>
<tr>
<td>u</td>
<td>1 ... 1 1</td>
<td>0 ... 1 0</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

- **Biasing has no effect**
Case 2: Rounding

Biasing adds 1 to final result
C Function

```c
int idiv8(int x) {
    return x/8;
}
```

Compiled Arithmetic Operations

```
testl %eax, %eax
js    L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp   L3
```

Explanation

- Uses arithmetic shift for `int`
- For Java Users
 - Arithmetic shift written as `>>`

```java
int idiv8(int x) {
    if (x < 0) {
        x += 7;
    }
    return x >> 3;
}
```
Arithmetic: Basic Rules

▶ Addition:
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition \(\text{mod } 2^w \)
 - Mathematical addition + possible subtraction of \(2^w \)
 - Signed: modified addition \(\text{mod } 2^w \) (result in proper range)
 - Mathematical addition + possible addition or subtraction of \(2^w \)

▶ Multiplication:
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication \(\text{mod } 2^w \)
 - Signed: modified multiplication \(\text{mod } 2^w \) (result in proper range)
ARITHMETIC: BASIC RULES

- **Unsigned ints, 2’s complement ints** are isomorphic rings: isomorphism = casting

- **Left shift**
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift

- **Right shift**
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Properties of Unsigned Arithmetic

- Unsigned multiplication with addition forms commutative ring
 - Addition is commutative group
 - Closed under multiplication
 \[0 \leq \text{UMult}_w(u,v) \leq 2^w - 1 \]
 - Multiplication Commutative
 \[\text{UMult}_w(u,v) = \text{UMult}_w(v,u) \]
 - Multiplication is Associative
 \[\text{UMult}_w(t,\text{UMult}_w(u,v)) = \text{UMult}_w(\text{UMult}_w(t,u),v) \]
 - 1 is multiplicative identity
 \[\text{UMult}_w(u,1) = u \]
 - Multiplication distributes over addition
 \[\text{UMult}_w(t,\text{UAdd}_w(u,v)) = \text{UAdd}_w(\text{UMult}_w(t,u),\text{UMult}_w(t,v)) \]
Properties of Two’s Comp. Arithmetic

- Isomorphic algebras
 - Unsigned multiplication and addition
 - Truncating to \(w \) bits
 - Two’s complement multiplication and addition
 - Truncating to \(w \) bits

- Both form rings
 - Isomorphic to ring of integers \(\mathbb{Z} \mod 2^w \)

- Comparison to (mathematical) integer arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,
 \[
 u > 0 \quad \Rightarrow \quad u + v > v \\
 u > 0, \ v > 0 \quad \Rightarrow \quad u \cdot v > 0
 \]
 - These properties are not obeyed by two’s comp. arithmetic
 \[
 \text{TMax} + 1 = \text{TMin} \\
 15213 \times 30426 = -10030 \quad \text{(16-bit words)}
 \]
Why Should I Use Unsigned?

- Practice Problem 2.23
- Don’t use just because number nonnegative
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
    ```
- Do use when performing modular arithmetic
 - Multiprecision arithmetic
- Do use when using bits to represent sets
 - Logical right shift, no sign extension
Integer C Puzzles

- \(x < 0 \) \(\Rightarrow \) \(((x \times 2) < 0)\)
- \(ux \geq 0 \)
- \(x \& 7 == 7 \) \(\Rightarrow \) \((x << 30) < 0\)
- \(ux > -1 \)
- \(x > y \) \(\Rightarrow \) \(-x < -y\)
- \(x \times x \geq 0 \)
- \(x > 0 \&\& y > 0 \) \(\Rightarrow \) \(x + y > 0 \)
- \(x \geq 0 \) \(\Rightarrow \) \(-x \leq 0\)
- \(x \leq 0 \) \(\Rightarrow \) \(-x \geq 0\)
- \((x|\neg x) >> 31 == -1\)
- \(ux >> 3 == ux/8\)
- \(x >> 3 == x/8\)
- \(x \& (x-1) != 0\)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```