Bits, Bytes, and Integers

Spring, 2017

Euiseong Seo

(euiseong@skku.edu)
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Binary Representations
Encoding Byte Values

- **Byte = 8 bits**
 - Binary: 00000000₂ to 11111111₂
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal: 0₀₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Programs refer to virtual addresses
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - System provides address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + run-time system control allocation
 - Where different program objects should be stored
 - All allocation within single virtual address space
Machine Words

- Machine has “Word Size”
 - Nominal size of integer-valued data
 - Including addresses
 - Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - High-end systems use 64 bits (8 bytes) words
 - Potential address space $\approx 1.8 \times 10^{19}$ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- Addresses specify byte locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td>Addr = 0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td>0002</td>
<td>0002</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td>Addr = 0008</td>
<td>0003</td>
<td>0003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0004</td>
<td>0004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0005</td>
<td>0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0006</td>
<td>0006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0007</td>
<td>0007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0008</td>
<td>0008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0009</td>
<td>0009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0012</td>
<td>0012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0013</td>
<td>0013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0014</td>
<td>0014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0015</td>
<td>0015</td>
</tr>
</tbody>
</table>
DATA SIZES

- Computer and compiler support multiple data formats
 - Using different ways to encode data
 - Integers and floating point
 - Using different lengths
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
A multi-byte object is stored as a contiguous sequence of bytes
 - With a address of the object given by the smallest address of the bytes

How should bytes within a multi-byte word be ordered in memory?

Conventions
 - Big Endian: Sun, PPC Mac, Internet
 • Least significant byte has highest address
 - Little Endian: x86
 • Least significant byte has lowest address
BYTE ORDERING EXAMPLE

- **Big Endian**
 - Least significant byte has highest address

- **Little Endian**
 - Least significant byte has lowest address

- **Example**
 - Variable x has 4-byte representation `0x01234567`
 - Address given by `&x` is `0x100`

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
READING BYTE-REVERSED LISTINGS

► Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

► Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

► Deciphering Numbers

- Value: 0x12ab
- Pad to 32 bits: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00
EXAMINING DATA REPRESENTATIONS

Code to print byte representation of data

- Textbook Figure 2.4 at page 42
- Casting pointer to `unsigned char *` creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux):

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x11ffffcb8</td>
<td>0x6d</td>
</tr>
<tr>
<td>0x11ffffcb9</td>
<td>0x3b</td>
</tr>
<tr>
<td>0x11ffffcba</td>
<td>0x00</td>
</tr>
<tr>
<td>0x11ffffcbb</td>
<td>0x00</td>
</tr>
</tbody>
</table>
Representing Integers

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3B6D

int A = 15213;

long int C = 15213;

int B = -15213;

Two's complement representation
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th>SUN</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td>D4</td>
<td>0C</td>
</tr>
<tr>
<td>FF</td>
<td>F8</td>
<td>89</td>
</tr>
<tr>
<td>FB</td>
<td>FF</td>
<td>EC</td>
</tr>
<tr>
<td>2C</td>
<td>BF</td>
<td>FF</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects.
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```c
char S[6] = "18243";
```
Machine-Level Code Representation

- Encode Program as Sequence of Instructions
 - Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
 - Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)
 - Different instruction types and encodings for different machines
 - Most code not binary compatible

- Programs are Byte Sequences Too!
For this example, Alpha & Sun use two 4-byte instructions
- Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

```
int sum(int x, int y) {
  return x + y;
}
```

Different machines use totally different instructions and encodings
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
BOOLEAN ALGEBRA

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

<table>
<thead>
<tr>
<th>and</th>
<th>or</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&B = 1 when both A=1 and B=1</td>
<td>A</td>
</tr>
<tr>
<td>&</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>not</th>
<th>exclusive-or (xor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~A = 1 when A=0</td>
<td>A^B = 1 when either A=1 or B=1, but not both</td>
</tr>
<tr>
<td>~</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

 \[
 01101001 \& 01010101 = 01000001, \quad 01101001 \mid 01010101 = 01111101, \quad 01101001 ^{01010101} = 00111100, \quad \sim 01010101 = 10101010
 \]

- All of the Properties of Boolean Algebra Apply
BIT-LEVEL OPERATIONS IN C

- Operations &, |, ~, ^ available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (char data type)
 - ~0x41 → 0xBE
 - ~01000001₂ → 10111110₂
 - ~0x00 → 0xFF
 - ~00000000₂ → 11111111₂
 - 0x69 & 0x55 → 0x41
 - 01101001₂ & 01010101₂ → 01000001₂
 - 0x69 | 0x55 → 0x7D
 - 01101001₂ | 01010101₂ → 01111101₂
Logic Operations in C

Comparison to Logical Operators

- &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 → 0x00
- !0x00 → 0x01
- !!0x41 → 0x01
- 0x69 && 0x55 → 0x01
- 0x69 || 0x55 → 0x01
- p && *p (avoids null pointer access)
SHIFT OPERATIONS

► Left Shift: \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

► Right Shift: \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right

► Undefined Behavior
 - Shift amount \(< 0\) or \(\geq\) word size
C O O L S T U F F W I T H X O R

- Bitwise xor is a form of addition.
- With extra property that every value is its own additive inverse.
 - \(A \oplus A = 0 \)

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```

<table>
<thead>
<tr>
<th></th>
<th>(*x)</th>
<th>(*y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>(A \oplus B)</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>(A \oplus B)</td>
<td>((A \oplus B) \oplus B = A)</td>
</tr>
<tr>
<td>3</td>
<td>((A \oplus B) \oplus A = B)</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
SUMMARY

- It’s all about bits & bytes
 - Numbers
 - Programs
 - Text

- Different machines follow different conventions
 - Word size
 - Byte ordering
 - Representations and encoding

- Boolean algebra is mathematical basis
 - Basic form encodes “false” as 0, “true” as 1
 - General form like bit-level operations in C
 - Good for representing & manipulating sets
BITS, BYTES, AND INTEGERS

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
ENCODING INTEGERS

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two’s Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

- **C short 2 bytes long**

- **Sign Bit**
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>
ENCODING EXAMPLE

\[x = 15213: 00111011 01101101\]

\[y = -15213: 11000100 10010011\]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum | **15213** | **-15213** |
NUMERIC RANGES

- **Unsigned Values**
 - $U_{\text{Min}} = 0$
 - $000...0$
 - $U_{\text{Max}} = 2^w - 1$
 - $111...1$

- **Two’s Complement Values**
 - $T_{\text{Min}} = -2^{w-1}$
 - $100...0$
 - $T_{\text{Max}} = 2^{w-1} - 1$
 - $011...1$

- **Other Values**
 - Minus 1
 - $111...1$

Values for $w = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>65535</td>
<td>FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>32767</td>
<td>7F</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-32768</td>
<td>80</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

▶ Observations
- $|T_{\text{Min}}| = T_{\text{Max}} + 1$
 - Asymmetric range
- $U_{\text{Max}} = 2 \times T_{\text{Max}} + 1$

▶ C Programming
- `#include <limits.h>`
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform specific
Unsigned & Signed Numeric Values

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- Can invert mappings
 - \(\text{U2B}(x) = \text{B2U}^{-1}(x) \)
 - Bit pattern for unsigned integer
 - \(\text{T2B}(x) = \text{B2T}^{-1}(x) \)
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\text{B2U}(x))</th>
<th>(\text{B2T}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>0001</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>0010</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>0011</td>
<td>(3)</td>
<td>(3)</td>
</tr>
<tr>
<td>0100</td>
<td>(4)</td>
<td>(4)</td>
</tr>
<tr>
<td>0101</td>
<td>(5)</td>
<td>(5)</td>
</tr>
<tr>
<td>0110</td>
<td>(6)</td>
<td>(6)</td>
</tr>
<tr>
<td>0111</td>
<td>(7)</td>
<td>(7)</td>
</tr>
<tr>
<td>1000</td>
<td>(8)</td>
<td>(-8)</td>
</tr>
<tr>
<td>1001</td>
<td>(9)</td>
<td>(-7)</td>
</tr>
<tr>
<td>1010</td>
<td>(10)</td>
<td>(-6)</td>
</tr>
<tr>
<td>1011</td>
<td>(11)</td>
<td>(-5)</td>
</tr>
<tr>
<td>1100</td>
<td>(12)</td>
<td>(-4)</td>
</tr>
<tr>
<td>1101</td>
<td>(13)</td>
<td>(-3)</td>
</tr>
<tr>
<td>1110</td>
<td>(14)</td>
<td>(-2)</td>
</tr>
<tr>
<td>1111</td>
<td>(15)</td>
<td>(-1)</td>
</tr>
</tbody>
</table>
BITS, BYTES, AND INTEGERS

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Mapping Between Signed & Unsigned

- **Two’s Complement**
 - X → T2B → B2U → ux
 - Maintain Same Bit Pattern

- **Unsigned**
 - ux → U2T → U2B → B2T → X
 - Maintain Same Bit Pattern

- **Mappings between unsigned and two’s complement numbers**
 - keep bit representations and **reinterpret**
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Two’s Complement

\[\begin{align*}
 x \rightarrow & \quad \text{T2B} \rightarrow \text{B2U} \rightarrow u x \\
 w-1 & \quad 0 \\
 u x & \begin{array}{c} + + + \\ + + + \\ - + + \\ \vdots \\ + + + \\ + + + \\ + + + \\ + + + \\ \vdots \\ + + + \\
\end{array} \\
 x & \begin{array}{c} - + + \\ \vdots \\ + + + \\ + + + \\ \vdots \\ + + + \\ + + + \\ \vdots \\ + + + \\
\end{array}
\end{align*} \]

Maintain Same Bit Pattern

Large negative weight becomes Large positive weight

\[u x = \begin{cases}
 x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases} \]
2’s Comp. → Unsigned
- Ordering Inversion
- Negative → Big Positive
Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - 0U, 4294967259U

- Casting
 - Explicit casting between signed & unsigned same as U2T and T2U
 - int tx, ty;
 - unsigned ux, uy;
 - tx = (int) ux;
 - uy = (unsigned) ty;
 - Implicit casting also occurs via assignments and procedure calls
 - tx = ux;
 - uy = ty;
Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression
 - Signed values implicitly cast to unsigned
- Including comparison operations $<, >, ==, <=, >=$
- Example \(W = 32: T_{\text{MIN}} = -2,147,483,648: T_{\text{MAX}} = 2,147,483,647 \)

<table>
<thead>
<tr>
<th>Constant(_1)</th>
<th>Constant(_2)</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Casting Basic Rules

- Bit pattern is maintained
 - But reinterpreted

- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!
TODAY: BITS, BYTES, AND INTEGERS

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Task:
- Given w-bit signed integer x
- Convert it to $w+k$-bit integer with same value

Rule:
- Make k copies of sign bit:
- $X = x_{w-1},...,x_{w-1},x_{w-1},x_{w-2},...,x_0$

k copies of MSB
SIGN EXTENSION EXAMPLE

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```
short int x =  15213;
int    ix = (int) x;
short int y = -15213;
int    iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15123</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15123</td>
<td>00 00</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15123</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15123</td>
<td>FF FF</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Prove correctness by induction on k

- Induction step
 - Extending by single bit maintains value

- Key observation: $-2^w = -2^{w+1} + 2^w$
TRUNCATING NUMBERS

- Truncating a number can alter its value
 - A form of overflow
- For an unsigned number of x
 - Result of truncating it to k bits is equivalent to computing $x \mod 2^k$

```c
int x = 50323;
short int ux = (short) x;  // -15213
int y = sx;  // -15213
```

\[
B2U_k([x_k, x_{k-1}, \ldots, x_0]) = B2U_w([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k \\
B2T_k([x_k, x_{k-1}, \ldots, x_0]) = U2T_k(B2U_w([x_w, x_{w-1}, \ldots, x_0]) \mod 2^k)
\]
EXPANDING, TRUNCATING: BASIC RULES

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior
ADVICE ON SIGNED AND UNSIGNED

▶ Implicit conversion of signed to unsigned
 ○ Can lead to error or vulnerabilities

▶ Be careful when using unsigned numbers
 ○ Java supports only signed integers
 ○ >> : arithmetic shift
 ○ >>> : logical shift
TODAY: BITS, BYTES, AND INTEGERS

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Claim: following holds for 2’s complement
\[\sim x + 1 = -x \]

Complement
- Observation: \(\sim x + x = 111\ldots112 = -1 \)

<table>
<thead>
<tr>
<th>x</th>
<th>100111101</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ (\sim x)</td>
<td>01100010</td>
</tr>
<tr>
<td>-1</td>
<td>111111111</td>
</tr>
</tbody>
</table>

Increment
- \(\sim x + x + (\sim x + 1) = -1 + (\sim x + 1) \)
- \(\sim x + 1 = -x \)
COMPLEMENT & INCREMENT EXAMPLES

\[x = 15213 \]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>(\sim x)</td>
<td>-15214</td>
<td>C4 92 11000100 10010010</td>
</tr>
<tr>
<td>(\sim x + 1)</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
<tr>
<td>(-x)</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>

\[x = 0 \]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>(\sim 0)</td>
<td>-1</td>
<td>FF FF 11111111 11111111</td>
</tr>
<tr>
<td>(\sim 0 + 1)</td>
<td>0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
Unsigned Addition

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Sum: (w+1) bits</td>
<td>(u + v)</td>
<td></td>
</tr>
<tr>
<td>Discard Carry: (w) bits</td>
<td>(\text{UAdd}_w(u, v))</td>
<td></td>
</tr>
</tbody>
</table>

- **Standard addition function**
 - Ignores \(\text{CARRY}\) output
- **Implements modular arithmetic**
 \[s = \text{UAdd}_w(u, v) = u + v \mod 2^w \]

\[\text{UAdd}_w(u, v) = \begin{cases} u + v & u + v < 2^w \\ u + v - 2^w & u + v \geq 2^w \end{cases} \]
VISUALIZING INTEGER ADDITION

- 4-bit integers \(u, v \)
- Compute true sum \(\text{Add}_4(u, v) \)
- Values increase linearly with \(u \) and \(v \)
- Forms planar surface
VISUALIZING UNSIGNED ADDITION

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

True Sum

2^{w+1}

2^w

0

Modular Sum

Overflow

$UAdd_4(u, v)$
Mathematical Properties of UAdd

► Modular Addition Forms an Abelian Group

- **Closed** under addition
 \[0 \leq \text{UAdd}_w(u,v) \leq 2^w - 1 \]

- **Commutative**
 \[\text{UAdd}_w(u,v) = \text{UAdd}_w(v,u) \]

- **Associative**
 \[\text{UAdd}_w(t,\text{UAdd}_w(u,v)) = \text{UAdd}_w(\text{UAdd}_w(t,u),v) \]

- **0** is additive identity
 \[\text{UAdd}_w(u,0) = u \]

- Every element has additive **inverse**

 - Let
 \[\text{UComp}_w(u) = 2^w - u \]
 \[\text{UAdd}_w(u,\text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>v</td>
<td>$u + v$</td>
<td>$\text{TAdd}_w(u, v)$</td>
</tr>
<tr>
<td>Operands: w bits</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>True Sum: $w+1$ bits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discard Carry: w bits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **TAdd** and **UAdd** have identical bit-level behavior
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int)((unsigned)u + (unsigned)v);
    t = u + v
    ```
 - Will give $s == t$
TAdd Overflow

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s complement integer

![Diagram showing TAdd overflow]

- **True Sum**
 - $011\ldots1$
 - $0100\ldots0$
 - $0000\ldots0$
 - $1011\ldots1$
 - $1000\ldots0$
 - -2^w
 - $2^w - 1$

- **TAdd Result**
 - $011\ldots1$
 - $000\ldots0$
 - $100\ldots0$

- **PosOver**
- **NegOver**
Visualizing 2’s Complement Addition

Values
- 4-bit two’s comp.
- Range from -8 to +7

Wraps around
- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s complement integer

\[
TAdd_w(u, v) = \begin{cases}
 u + v + 2^w, & u + v < T \min_w \\
 u + v, & T \min_w \leq u + v \leq T \max_w \\
 u + v - 2^w, & T \max_w \leq u + v
\end{cases}
\]

- Positive Overflow
- Negative Overflow
MATHEMATICAL PROPERTIES OF TAdd

► Isomorphic group to unsigned with UAdd
 - TAdd\(_w\)(u, v) = U2T(UAdd\(_w\)(T2U(u), T2U(v)))
 - Since both have identical bit patterns

► Two’s complement under TAdd forms a group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse
 - Let
 - TComp\(_w\)(u) = U2T(UComp\(_w\)(T2U(u)))
 - TAdd\(_w\)(u, TComp\(_w\)(u)) = 0

\[
TComp\(_w\)(u) = \begin{cases}
-u & u \neq TMin\(_w\) \\
TMin\(_w\) & u = TMin\(_w\)
\end{cases}
\]
Multiplication

- Computing exact product of w-bit numbers x, y
 - Either signed or unsigned

- Ranges
 - Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to $2w$ bits
 - Two’s complement min:
 $x \times y \geq (-2^{w-1}) \times (2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to $2w-1$ bits
 - Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to $2w$ bits, but only for $(T_{Min_w})^2$

- Maintaining exact results
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
UNSIGNED MULTIPLICATION IN C

Operands: w bits

True Product: 2*w bits

Discard: w bits

Standard multiplication function

- Ignores high order w bits

Implements modular arithmetic

- \(UMult_w(u, v) = u \cdot v \mod 2^w \)
CODE SECURITY EXAMPLE #2

- **SUN XDR library**
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

- **ele_src**
 - `malloc(ele_cnt*ele_size)`
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL)
 /* malloc failed */
 return NULL;
 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
What if:
- \(ele_{\text{cnt}} = 2^{20} + 1 \)
- \(ele_{\text{size}} = 4096 = 2^{12} \)
- Allocation = ??

How can I make this function secure?
Signed Multiplication in C

Standard Multiplication Function
- Ignores high order \(w\) bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

<table>
<thead>
<tr>
<th>Operands: (w) bits</th>
<th>(u \cdot v)</th>
<th>True Product: (2^w) bits</th>
<th>TMult(_w)((u), (v))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discard: (w) bits</td>
<td>(u)</td>
<td>(v)</td>
<td>Discard: (w) bits</td>
</tr>
</tbody>
</table>

- \(u\) and \(v\) are the operands, and \(w\) is the number of bits.
- The true product is \(2^w\) bits.
- The standard multiplication function ignores the high order \(w\) bits.
- The lower bits are the same for signed and unsigned multiplication.
UNSIGNED VS. SIGNED MULTIPLICATION

- Unsigned multiplication

  ```c
  unsigned ux = (unsigned) x;
  unsigned uy = (unsigned) y;
  unsigned up = ux * uy
  ```

 - Truncates product to w-bit number
    ```c
    up = UMultw(ux, uy)
    ```

 - Modular arithmetic
    ```c
    up = ux * uy \mod 2^w
    ```

- Two’s Complement Multiplication

  ```c
  int x, y;
  int p = x * y;
  ```

 - Compute exact product of two w-bit numbers x, y
    ```c
    p = TMultw(x, y)
    ```

 - Truncate result to w-bit number p = TMultw(x, y)
Unsigned vs. Signed Multiplication

<table>
<thead>
<tr>
<th>Mode</th>
<th>x</th>
<th>y</th>
<th>$x \cdot y$</th>
<th>Truncated $x \cdot y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>4</td>
<td>[100]</td>
<td>7 [111]</td>
<td>28 [011100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>-4</td>
<td>[100]</td>
<td>-1 [111]</td>
<td>4 [000100]</td>
</tr>
<tr>
<td>Two’s comp.</td>
<td>3</td>
<td>[011]</td>
<td>3 [011]</td>
<td>9 [001001]</td>
</tr>
</tbody>
</table>
Power-of-2 Multiply with Shift

- **Operation**
 - \(u << k \) gives \(u \times 2^k \)
 - Both signed and unsigned

- **Examples**
 - \(u << 3 = u \times 8 \)
 - \(u << 5 - u << 3 = u \times 24 \)
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically
C compiler automatically generates shift/add code when multiplying by constant

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

```plaintext
lea  (%eax,%eax,2), %eax
sall  $2, %eax
```
UNSIGNED POWER-OF-2 DIVIDE WITH SHIFT

- Quotient of unsigned by power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

<table>
<thead>
<tr>
<th>Operands:</th>
<th>Division:</th>
<th>Result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(/ \ 2^k)</td>
<td>(\lfloor u / 2^k \rfloor)</td>
</tr>
<tr>
<td>(u / 2^k)</td>
<td>(\lfloor u / 2^k \rfloor)</td>
<td></td>
</tr>
</tbody>
</table>

- Table:

<table>
<thead>
<tr>
<th>x</th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
C Function

```c
unsigned udiv8(unsigned x) {
    return x/8;
}
```

Compiled Arithmetic Operations

```c
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>
SIGNED POWER-OF-2 DIVIDE WITH SHIFT

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

<table>
<thead>
<tr>
<th>Operands:</th>
<th>$x \gg k$</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>\div</td>
<td>0</td>
<td>\cdots</td>
</tr>
<tr>
<td>Division:</td>
<td>$x / 2^k$</td>
<td></td>
</tr>
<tr>
<td>Result:</td>
<td>$\text{RoundDown}(x / 2^k)$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>111111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>111111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- **Quotient of Negative Number by Power of 2**
 - Want \[\left\lfloor \frac{x}{2^k} \right\rfloor \] (Round Toward 0)
 - \[\left\lfloor \frac{x}{y} \right\rfloor = \left\lfloor \frac{x + y - 1}{y} \right\rfloor \]
 - \[\left\lfloor \frac{x}{2^k} \right\rfloor = \left\lfloor \frac{x + 2^k - 1}{2^k} \right\rfloor \]
 - Compute as \[\left\lfloor \frac{x + 2^k - 1}{2^k} \right\rfloor \]
 - In C: \((x + (1<<k)-1) >> k\)
 - Biases dividend toward 0

- **Case 1: No rounding**

<table>
<thead>
<tr>
<th>Bias:</th>
<th>(+2^k - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividend:</td>
<td>(1\cdots\cdots1)</td>
</tr>
<tr>
<td>Divisor: (2^k)</td>
<td>(0\cdots01\cdots00)</td>
</tr>
<tr>
<td>Quotient: (u/2^k)</td>
<td>(1\cdots11\cdots1)</td>
</tr>
</tbody>
</table>

Biasing has no effect

- **Case 2: Rounding**

<table>
<thead>
<tr>
<th>Bias:</th>
<th>(+2^k - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividend:</td>
<td>(1\cdots\cdots1)</td>
</tr>
<tr>
<td>Divisor: (2^k)</td>
<td>(0\cdots00)</td>
</tr>
<tr>
<td>Quotient: (u/2^k)</td>
<td>(1\cdots11\cdots1)</td>
</tr>
</tbody>
</table>

![Binary Point](binary_point.png)
Case 2: Rounding

Correct Power-of-2 Divide (Cont.)

Dividend: \(+2^k - 1 \)

Divisor: \(/ 2^k \)

\[\left\lfloor \frac{x}{2^k} \right\rfloor \]

Biasing adds 1 to final result

Incremented by 1

Binary Point

Incremented by 1
Compiled Signed Division Code

C Function

```c
int idiv8(int x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```assembly
testl %eax, %eax
js L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp L3
```

Explanation

- Uses arithmetic shift for `int`
- For Java Users
 - Arithmetic shift written as `>>`

```java
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```
ARITHMETIC: BASIC RULES

► Addition:
 o Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 o Unsigned: addition $\mod 2^w$
 - Mathematical addition + possible subtraction of 2^w
 o Signed: modified addition $\mod 2^w$ (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

► Multiplication:
 o Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 o Unsigned: multiplication $\mod 2^w$
 o Signed: modified multiplication $\mod 2^w$ (result in proper range)
ARITHMETIC: BASIC RULES

- **Unsigned ints, 2’s complement ints** are isomorphic rings: isomorphism = casting

- **Left shift**
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift

- **Right shift**
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
TODAY: INTEGERS

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Properties of Unsigned Arithmetic

- Unsigned multiplication with addition forms commutative ring
 - Addition is commutative group
 - Closed under multiplication
 \[0 \leq \text{UMult}_w(u,v) \leq 2^w - 1\]
 - Multiplication Commutative
 \[\text{UMult}_w(u,v) = \text{UMult}_w(v,u)\]
 - Multiplication is Associative
 \[\text{UMult}_w(t,\text{UMult}_w(u,v)) = \text{UMult}_w(\text{UMult}_w(t,u),v)\]
 - 1 is multiplicative identity
 \[\text{UMult}_w(u,1) = u\]
 - Multiplication distributes over addition
 \[\text{UMult}_w(t,\text{UAdd}_w(u,v)) = \text{UAdd}_w(\text{UMult}_w(t,u),\text{UMult}_w(t,v))\]
Properties of Two’s Comp. Arithmetic

- Isomorphic algebras
 - Unsigned multiplication and addition
 - Truncating to w bits
 - Two’s complement multiplication and addition
 - Truncating to w bits

- Both form rings
 - Isomorphic to ring of integers $\mod 2^w$

- Comparison to (mathematical) integer arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,
 \[
 u > 0 \quad \Rightarrow \quad u + v > v
 \]
 \[
 u > 0, \ v > 0 \quad \Rightarrow \quad u \cdot v > 0
 \]
 - These properties are not obeyed by two’s comp. arithmetic
 \[
 T_{\text{Max}} + 1 = T_{\text{Min}}
 \]
 \[
 15213 \times 30426 = -10030 \quad (16\text{-bit words})
 \]
Why Should I Use Unsigned?

- Practice Problem 2.23

- **Don’t** use just because number nonnegative
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
    ```

- **Do** use when performing modular arithmetic
 - Multiprecision arithmetic

- **Do** use when using bits to represent sets
 - Logical right shift, no sign extension
integer C Puzzles

- $x < 0 \Rightarrow ((x*2) < 0)$
- $ux >= 0$
- $x & 7 == 7 \Rightarrow (x<<30) < 0$
- $ux > -1$
- $x > y \Rightarrow -x < -y$
- $x * x >= 0$
- $x > 0 && y > 0 \Rightarrow x + y > 0$
- $x >= 0 \Rightarrow -x <= 0$
- $x <= 0 \Rightarrow -x >= 0$
- $(x|-x)>>31 == -1$
- $ux >> 3 == ux/8$
- $x >> 3 == x/8$
- $x & (x-1) != 0$

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```