SWE2001-44: System Programs
Spring 2020

Jinkyu Jeong (jinkyu@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Introduction

• Schedule
 – 16:30 – 17:45 (Tuesday), 15:00 – 16:15 (Thursday)
 – Lecture room #400112, Semiconductor Bldg.

• Course homepage
 – http://csl.skku.edu/SWE2001S20/
 – Lecture slides, announcements, programming assignments, exam scores, …
 – Don’t waste your time in i-Campus

• Q&A website
 – https://piazza.com/sungkyunkwan_university/spring2020/swe200144
 – Access code: swe2001s20
About Me

• Jinkyu Jeong
 – Associate professor @ SSE and SW Dept.
 – Computer Systems laboratory
 – Research area
 • Operating systems, storage systems, mobile systems, machine virtualization, …
 – Email: jinkyu@skku.edu
 – URL: http://csl.skku.edu/People/Jinkyu
 – Tel: 031-290-7692
 – Office: Semiconductor bldg. #400510 (5th floor)
 – Office hours: Tuesdays & Thursdays
 – Email contact is preferred
(Awesome) TAs

• Sunghwan Kim (김성환)
 – Email: wadong100@csi.skku.edu
 – Office: #400509, Semiconductor Bldg.

• Jiwon Woo (우지원)
 – Email: jiwon.woo@csi.skku.edu
 – Office: #400509, Semiconductor Bldg.
This course is equivalent to the course “Introduction to Computer Systems (컴시개)”
Goal of this Course

How does the computer system work?

or

How does your C program run?
Computer Systems
Computer Systems Internals

Software

System calls

Operating Systems

Application

Architecture

Hardware

CPU

Mem

I/O Devices
Levels of Abstraction

<table>
<thead>
<tr>
<th>Application programs</th>
<th>Programming languages & compilers</th>
<th>Operating system</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data structures & algorithms</td>
<td>Hardware description languages</td>
<td>Digital logic</td>
<td>VLSI layout</td>
</tr>
<tr>
<td>Microarchitecture</td>
<td>Processing, Fabrication</td>
<td>Chemistry, Physics</td>
<td></td>
</tr>
</tbody>
</table>
Course Plan

• Program structure and assembly programming
 – Data types: integers, floating points, complex data types
 – Arithmetic and logical operations
 – Control flow

• Running programs
 – Processor architecture
 – Memory hierarchy
 – Linking
 – Operating systems
 – Performance optimizations
Course Components

• Lectures
 – Backgrounds
 – Concepts

• Projects
 – The heart of this course!
 – Provide in-depth understanding of an aspect of systems
 – C/Assembly programming on Linux platform
 – Design, implementation, measurement, optimization
 – Each project must be done individually
Prerequisites

• Courses
 – Basis and Practice in Programming or equivalents
 – Logic circuits: ICE2001
 – Data structures and algorithms or equivalents: SSE2029 or ICE2002

• Required skills
 – C programming
 – Basic knowledge of Unix/Linux systems

• Caution
 – This course is identical to ”Introduction to Computer Systems”
 – Those who took ”컴시개” should not take this course
Textbook

• Computer Systems: A Programmer’s Perspective

 – Randal E. Bryant and David R. O’Hallaron
 – Pearson Education, Inc.

 – http://csapp.cs.cmu.edu
References: C

• The C Programming Language
 – Brian W. Kernighan and Dennis M. Ritchie (a.k.a K&R book)
 – Prentice-Hall
References: x86 Assembly

- x86-64 Assembly Language Programming with Ubuntu
 - Ed Jorgensen
 - Version 1.0.34
 - March 2016
 - http://www.egr.unlv.edu/~ed/

- The Art of Assembly Language Programming
 - Randall Hyde
 - http://webster.cs.ucr.edu
Reference: x86 Architecture

- Intel Architectures Software Developer’s Manual
 - Volume 1: Basic Architecture
 - Volume 2: Instruction Set Reference
 - Volume 3: System Programming Guide

Grading Policy

• Grading system
 – Class attendance: 10%
 – Exams: 50%
 • Midterm: 20%
 • Final: 30%
 – Projects: 40%
 – Subject to change

• Class attendance policy
 – If you miss any of the exams, you will fail this course
 – No lateness is allowed
 – Up to four absences will be tolerated
Class Attendance Policy

• Each of you will have a designated seat (aka 고정 좌석제).
 – Take a seat you like this Wednesday (3/7) and that seat will be yours for the first half of the semester.
 – We will do the same thing after the midterm.
 – Instructor reserves the right to reassign seats as necessary.

• TA will check the attendance by marking empty seats
 – Don’t be late; he may check the attendance at the beginning of the class (or at any random time)
Cheating Policy

• What is cheating?
 – Copying another student’s solution (or one from the Internet) and submitting it as your own
 – Allowing another student to copy your solution

• What is NOT cheating?
 – Helping others use systems or tools
 – Helping others with high-level design issues
 – Helping others debug their code

• Penalty for cheating
 – Severe penalty on the grade (F) and report to dept. chair
 – Ask helps to your TA if you experience any difficulty!
Summary

• You will gain systems-level perspective, which is required whether you are on the system software track or not

• This course serves as a foundation for upcoming courses:
 – System Software Experiment 2 (SSE2033)
 – Computer architecture, Operating systems
 – Programming languages/compilers
 – Microprocessor systems, Embedded systems, …