SWE2004: Principles in Programming (Spring 2013)

Programming Lab \#5

Due: April 11, 11:59 PM

Solomon Golomb's self-describing sequence $\{f(1), f(2), f(3), \ldots\}$ is the only nondecreasing sequence of positive integers with the property that it contains exactly $f(k)$ occurrences of k for each k. A few moment's thought reveals that the sequence must begin as follows:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathrm{f}(\mathrm{n})$	1	2	2	3	3	4	4	4	5	5	5	6	6	6	6

In this problem you are expected to write a program that calculates the value of $f(n)$ given the value of n.

Input

The input may contain multiple test cases. Each test case occupies a separate line and contains an integer $n(1 \leq n \leq 2,000,000,000)$. The input terminates with a test case containing a value 0 for n and this case must not be processed.

Output

For each test case in the input, output the value of $f(n)$ on a separate line.

Sample Input

100
9999
123456
1000000000
0

Sample Output

21
356
1684
438744

