
1 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Lecture 10
Graph Algorithms

Euiseong Seo
(euiseong@skku.edu)

2 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Graph Theory
§  Study of the properties of graph structures

•  It provides us with a language with which to talk about
graphs

§  Keys to solving problems
•  Identifying the fundamental graph theoretic notion

underlying the situation
•  Using classical algorithms to solve the resulting

problem

3 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Degrees
§  Number of edges connected to a vertex

§  For undirected graphs

•  Sum of all degrees = 2 * edges

§  For directed graph

•  Sum of in-­‐degree = sum of out-­‐degree

4 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Connectivity
§  A graph is connected if there is an undirected path

between every pair of vertices
§  Existence of a spanning tree -> connectivity

•  BFS or DFS connected component algorithms to find
connected components

§  Articulation vertex
•  A single vertex whose deletion disconnects the graph

§  Biconnected graphs
•  Any graphs without an articulation vertex

§  Bridge
•  A single edge whose deletion disconnects the graph

5 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Connectivity
§  Testing for articulation vertices or bridges

•  Brute force
•  Be sure to add that vertex/edge back before doing the

next deletion!
§  Strongly connected components

•  For directed graphs only
•  Partitions the graph into chunks such that there are

directed paths between all pairs of vertices within a
given chunk

•  Road networks should be strongly connected

6 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Cycles in Graphs
§  All non-tree connected graphs contain cycles
§  Eulerian cycle

•  A tour which visits every edge of the graph exactly once
•  Condition for a undirected graph to have an Eulerian

cycle?
•  Find an Eulerian cycle by building it once cycle at a

time
–  Finding a back edge using DFS
– Deleting the edges on this cycle leaves each vertex with even

degree

7 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Cycles in Graphs
§  Hamiltonian cycles

•  A tour which visits every vertex of the graph exactly
once

•  Traveling salesman problem = the shortest Hamiltonian
cycle on a weighted graph

•  No efficient algorithm to find one
–  Backtracking!

8 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Spanning Tree
§  Given a graph G = (V, E) and tree T = (V, Eʹ′)

–  Eʹ′ ⊂ E

–  for all (u, v) in Eʹ′ u, v ∈ V

–  for all connected graph, there exists a spanning tree

§  A spanning tree can be constructed using DFS or BFS

s

2

5

4

7

8

3 6 9

s

2

5

4

7

8

3 6 9

0

1

1

1

2

2

3

3

3

9 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Minimum Spanning Tree
§  A spanning tree whose sum of edge weights is �
minimal

§  Importance of MSTs

•  When to need connect a set of points by the smallest �
amount of roadway, wire or pipe

§  Prim’s and Kruskal’s algorithms

10 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Example of MST: Prim’s Algorithm

11 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

1.  Vertex D has been chosen as a starting point
①  Vertices A, B, E, F are connected to D through a single edge.
②  A is the nearest to D and thus chosen as the 2nd vertex along with

the edge AD

12 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

2.  The next vertex chosen is the vertex nearest to either D or A. So the verte
x F is chosen along with the edge DF

13 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

3.  same as 2, Vertex B is chosen.

14 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

4.  among C, E, G, E is chosen.

15 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

5.  among C, G, C is chosen.

16 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

6.  G is the only remaining vertex. E is chosen.

17 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

7.  The \inally obtained minimum spanning tree

 ⇒ the total weight is 39

18 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Applications of Prim’s
§  Maximum spanning trees
§  Minimum product spanning trees
§  Minimum bottleneck spanning tree

19 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Weighted Graph Data Type

Representing Weighted Graphs

We generalize the graph data structure to support edge-
weighted graphs. Each edge-entry previously contained only
the other endpoint of the given edge. We must replace this by
a record allowing us to annotate the edge with weights:
typedef struct {

int v; /* neighboring vertex */
int weight; /* edge weight */

} edge;

typedef struct {
edge edges[MAXV+1][MAXDEGREE]; /* adjacency info */
int degree[MAXV+1]; /* outdegree of vertex */
int nvertices; /* number of vertices */
int nedges; /* number of edges in graph */

} graph;

20 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Prim’s Algorithm
Prim’s Implementation

prim(graph *g, int start) {
int i,j; /* counters */
bool intree[MAXV]; /* is vertex in the tree yet? */
int distance[MAXV]; /* vertex distance from start */
int v; /* current vertex to process */
int w; /* candidate next vertex */
int weight; /* edge weight */
int dist; /* shortest current distance */

for (i=1; i<=g->nvertices; i++) {
intree[i] = FALSE;
distance[i] = MAXINT;
parent[i] = -1;

}
distance[start] = 0;
v = start;

while (intree[v] == FALSE) {
intree[v] = TRUE;
for (i=0; i<g->degree[v]; i++) {

w = g->edges[v][i].v;
weight = g->edges[v][i].weight;
if ((distance[w] > weight) && (intree[w]==FALSE)) {

distance[w] = weight;
parent[w] = v;

}
}

v = 1;
dist = MAXINT;
for (i=2; i<=g->nvertices; i++)

if ((intree[i]==FALSE) && (dist > distance[i])) {
dist = distance[i];

v = i;
}

}
}

21 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Shortest Path
§  For unweighted graphs

•  BFS suffices

§  For weighted graphs
•  Dijkstra’s algorithm

§  Dijkstra’s algorithm is very similar to Prim’s

22 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Dijkstra’s Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

23 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Dijkstra’s Algorithm Implementation of Dijkstra

dijkstra(graph *g, int start) /* WAS prim(g,start) */
{

int i,j; /* counters */
bool intree[MAXV]; /* is vertex in the tree yet? */
int distance[MAXV]; /* vertex distance from start */
int v; /* current vertex to process */
int w; /* candidate next vertex */
int weight; /* edge weight */
int dist; /* shortest current distance */

for (i=1; i<=g->nvertices; i++) {
intree[i] = FALSE;
distance[i] = MAXINT;
parent[i] = -1;

}
distance[start] = 0;
v = start;

while (intree[v] == FALSE) {
intree[v] = TRUE;
for (i=0; i<g->degree[v]; i++) {

w = g->edges[v][i].v;
weight = g->edges[v][i].weight;

/* CHANGED */ if (distance[w] > (distance[v]+weight)) {
/* CHANGED */ distance[w] = distance[v]+weight;

parent[w] = v;
}

}
v = 1;
dist = MAXINT;
for (i=2; i<=g->nvertices; i++)

if ((intree[i]==FALSE) && (dist > distance[i])) {
dist = distance[i];
v = i;

}
}

}

24 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

All Pairs Shortest Path
§  When you want to know the center vertex

for a new business
•  Dijksta’s?

§  We need another one
•  Floyd’s all pairs shortest path algorithm

25 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

All Pairs Shortest Path
§  Floyd’s algorithm

•  W(i,j,k) = min(W(i,j,k-1), W(i,k,k-1)+W(k,j,k-1))

26 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Transitive Closure
§  Sometimes we are interested in which vertices are

reachable from a given node
§  The Blackmail problem

27 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Network Flow
§  Any edge-weighted graph can be thought of as a

network of pipes
•  Weight of edge (i, j) measures the capacity of the pipe

§  Network flow problem
•  Given source and sink vertices of a graph
•  The maximum amount of flow which can be sent from

source to sink while respecting the maximum capacities
 of each pipe

28 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Network Flow

Flow network (flow/capacity)

Residual network for the above flow network

29 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Ford-Fulkerson Algorithm

30 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Bipartite Graphs
§  A graph G is bipartite or two-colorable

if the vertices can be divided into two sets
§  A matching in a graph G = (V, E) is a subset of

edges E’ ⊂ E such that no two edges in E’ share
a vertex
•  Job-worker pairs
•  Marriage graphs

§  The largest possible bipartite matching can be
found using network flow

31 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Problem: Fire Station
234 10. Graph Algorithms

10.5.3 Fire Station
PC/UVa IDs: 111003/10278, Popularity: B, Success rate: low Level: 2

A city is served by a number of fire stations. Residents have complained that the
distance between certain houses and the nearest station is too far, so a new station is to
be built. You are to choose the location of the new station so as to reduce the distance
to the nearest station from the houses of the poorest-served residents.

The city has up to 500 intersections, connected by road segments of various lengths.
No more than 20 road segments intersect at a given intersection. The locations of houses
and fire stations alike are considered to be at intersections. Furthermore, we assume
that there is at least one house associated with every intersection. There may be more
than one fire station per intersection.

Input
The input begins with a single line indicating the number of test cases, followed by a
blank line. There will also be a blank line between each two consecutive inputs.

The first line of input contains two positive integers: the number of existing fire
stations f (f ≤ 100) and the number of intersections i (i ≤ 500). Intersections are num-
bered from 1 to i consecutively. Then f lines follow, each containing the intersection
number at which an existing fire station is found. A number of lines follow, each con-
taining three positive integers: the number of an intersection, the number of a different
intersection, and the length of the road segment connecting the intersections. All road
segments are two-way (at least as far as fire engines are concerned), and there will exist
a route between any pair of intersections.

Output
For each test case, output the lowest intersection number at which a new fire station can
be built so as to minimize the maximum distance from any intersection to its nearest
fire station. Separate the output of each two consecutive cases by a blank line.

Sample Input
1

1 6
2
1 2 10
2 3 10
3 4 10
4 5 10
5 6 10
6 1 10

Sample Output
5

32 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Problem: Fire Station

234 10. Graph Algorithms

10.5.3 Fire Station
PC/UVa IDs: 111003/10278, Popularity: B, Success rate: low Level: 2

A city is served by a number of fire stations. Residents have complained that the
distance between certain houses and the nearest station is too far, so a new station is to
be built. You are to choose the location of the new station so as to reduce the distance
to the nearest station from the houses of the poorest-served residents.

The city has up to 500 intersections, connected by road segments of various lengths.
No more than 20 road segments intersect at a given intersection. The locations of houses
and fire stations alike are considered to be at intersections. Furthermore, we assume
that there is at least one house associated with every intersection. There may be more
than one fire station per intersection.

Input
The input begins with a single line indicating the number of test cases, followed by a
blank line. There will also be a blank line between each two consecutive inputs.

The first line of input contains two positive integers: the number of existing fire
stations f (f ≤ 100) and the number of intersections i (i ≤ 500). Intersections are num-
bered from 1 to i consecutively. Then f lines follow, each containing the intersection
number at which an existing fire station is found. A number of lines follow, each con-
taining three positive integers: the number of an intersection, the number of a different
intersection, and the length of the road segment connecting the intersections. All road
segments are two-way (at least as far as fire engines are concerned), and there will exist
a route between any pair of intersections.

Output
For each test case, output the lowest intersection number at which a new fire station can
be built so as to minimize the maximum distance from any intersection to its nearest
fire station. Separate the output of each two consecutive cases by a blank line.

Sample Input
1

1 6
2
1 2 10
2 3 10
3 4 10
4 5 10
5 6 10
6 1 10

Sample Output
5

234 10. Graph Algorithms

10.5.3 Fire Station
PC/UVa IDs: 111003/10278, Popularity: B, Success rate: low Level: 2

A city is served by a number of fire stations. Residents have complained that the
distance between certain houses and the nearest station is too far, so a new station is to
be built. You are to choose the location of the new station so as to reduce the distance
to the nearest station from the houses of the poorest-served residents.

The city has up to 500 intersections, connected by road segments of various lengths.
No more than 20 road segments intersect at a given intersection. The locations of houses
and fire stations alike are considered to be at intersections. Furthermore, we assume
that there is at least one house associated with every intersection. There may be more
than one fire station per intersection.

Input
The input begins with a single line indicating the number of test cases, followed by a
blank line. There will also be a blank line between each two consecutive inputs.

The first line of input contains two positive integers: the number of existing fire
stations f (f ≤ 100) and the number of intersections i (i ≤ 500). Intersections are num-
bered from 1 to i consecutively. Then f lines follow, each containing the intersection
number at which an existing fire station is found. A number of lines follow, each con-
taining three positive integers: the number of an intersection, the number of a different
intersection, and the length of the road segment connecting the intersections. All road
segments are two-way (at least as far as fire engines are concerned), and there will exist
a route between any pair of intersections.

Output
For each test case, output the lowest intersection number at which a new fire station can
be built so as to minimize the maximum distance from any intersection to its nearest
fire station. Separate the output of each two consecutive cases by a blank line.

Sample Input
1

1 6
2
1 2 10
2 3 10
3 4 10
4 5 10
5 6 10
6 1 10

Sample Output
5

33 SWE2004: Principles in Programming | Spring 2013 | Euiseong Seo (euiseong@skku.edu)

Problem: Fire Station

234 10. Graph Algorithms

10.5.3 Fire Station
PC/UVa IDs: 111003/10278, Popularity: B, Success rate: low Level: 2

A city is served by a number of fire stations. Residents have complained that the
distance between certain houses and the nearest station is too far, so a new station is to
be built. You are to choose the location of the new station so as to reduce the distance
to the nearest station from the houses of the poorest-served residents.

The city has up to 500 intersections, connected by road segments of various lengths.
No more than 20 road segments intersect at a given intersection. The locations of houses
and fire stations alike are considered to be at intersections. Furthermore, we assume
that there is at least one house associated with every intersection. There may be more
than one fire station per intersection.

Input
The input begins with a single line indicating the number of test cases, followed by a
blank line. There will also be a blank line between each two consecutive inputs.

The first line of input contains two positive integers: the number of existing fire
stations f (f ≤ 100) and the number of intersections i (i ≤ 500). Intersections are num-
bered from 1 to i consecutively. Then f lines follow, each containing the intersection
number at which an existing fire station is found. A number of lines follow, each con-
taining three positive integers: the number of an intersection, the number of a different
intersection, and the length of the road segment connecting the intersections. All road
segments are two-way (at least as far as fire engines are concerned), and there will exist
a route between any pair of intersections.

Output
For each test case, output the lowest intersection number at which a new fire station can
be built so as to minimize the maximum distance from any intersection to its nearest
fire station. Separate the output of each two consecutive cases by a blank line.

Sample Input
1

1 6
2
1 2 10
2 3 10
3 4 10
4 5 10
5 6 10
6 1 10

Sample Output
5

