
1 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Lecture 4
Sorting

Euiseong Seo
(euiseong@skku.edu)

2 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Sorting
§  One of the basic programming techniques
§  Tons of existing approaches

•  Time complexity
•  Space complexity
•  Other properties

§  Applicable to many problems

3 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Applications of Sorting
§  Uniqueness Testing
§  Deleting Duplications
§  Median/Selection
§  Frequency Counting
§  Reconstructing the Original Order
§  Set Intersection/Union
§  Finding a Target Pair
§  Efficient Searching

4 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Basic Sorting Algorithms
§  Insertion sort
§  Merge sort
§  Heap sort
§  Quick sort
§  Counting Sort
§  Bucket Sort

5 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Multicriteria Sorting
§  How can we break ties in sorting using

multiple criteria?
§  To use a complicated comparison function

that combines all the keys to break ties
§  To use repeated passes through a stable

sorting function
•  In reverse order of priorities of the keys

6 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Sorting Library Functions in C

4.4. Sorting Library Functions 83

The key to this problem is sorting under a fairly complex criteria defined over multiple
fields. There are at least two different ways we can do this. The first makes multiple
sorting passes, sorting first on the least important key, then the next least important
key, and so on until we finally sort on the major key.

Why do we sort in this order? The minor keys are only used to break ties among the
major key ordering. Provided our sorting algorithm is stable, meaning it preserves the
relative order of equal keys, our work on the minor keys remains intact if it is relevant
to the final answer.

Not all sorting algorithms are stable: indeed most fast ones are not! The
insertion sort and selection sort functions from Section 4.2 are stable, while
quicksort is not stable. Before you assume the stability of any sorting function, check
the documentation carefully.

The other approach, which is what we opted for, rolls all the keys up into one complex
comparison function. Doing it this way made it easiest to take advantage of the C library
sorting routine, described in the next section.

4.4 Sorting Library Functions

Whenever possible, take advantage of the built-in sorting/searching libraries in your
favorite programming language:

Sorting and Searching in C
The stdlib.h contains library functions for sorting and searching. For sorting, there is
the function qsort:

#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compare) (const void *, const void *));

The key to using qsort is realizing what its arguments do. It sorts the first nel
elements of an array (pointed to by base), where each element is width-bytes long.
Thus we can sort arrays of 1-byte characters, 4-byte integers, or 100-byte records, all
by changing the value of width.

The ultimate desired order is determined by the function compare. It takes as ar-
guments pointers to two width-byte elements, and returns a negative number if the
first belongs before the second in sorted order, a positive number if the second belongs
before the first, or zero if they are the same.

Here is a comparison function for sorting integers in increasing order:

int intcompare(int *i, int *j)
{

if (*i > *j) return (1);
if (*i < *j) return (-1);

4.4. Sorting Library Functions 83

The key to this problem is sorting under a fairly complex criteria defined over multiple
fields. There are at least two different ways we can do this. The first makes multiple
sorting passes, sorting first on the least important key, then the next least important
key, and so on until we finally sort on the major key.

Why do we sort in this order? The minor keys are only used to break ties among the
major key ordering. Provided our sorting algorithm is stable, meaning it preserves the
relative order of equal keys, our work on the minor keys remains intact if it is relevant
to the final answer.

Not all sorting algorithms are stable: indeed most fast ones are not! The
insertion sort and selection sort functions from Section 4.2 are stable, while
quicksort is not stable. Before you assume the stability of any sorting function, check
the documentation carefully.

The other approach, which is what we opted for, rolls all the keys up into one complex
comparison function. Doing it this way made it easiest to take advantage of the C library
sorting routine, described in the next section.

4.4 Sorting Library Functions

Whenever possible, take advantage of the built-in sorting/searching libraries in your
favorite programming language:

Sorting and Searching in C
The stdlib.h contains library functions for sorting and searching. For sorting, there is
the function qsort:

#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compare) (const void *, const void *));

The key to using qsort is realizing what its arguments do. It sorts the first nel
elements of an array (pointed to by base), where each element is width-bytes long.
Thus we can sort arrays of 1-byte characters, 4-byte integers, or 100-byte records, all
by changing the value of width.

The ultimate desired order is determined by the function compare. It takes as ar-
guments pointers to two width-byte elements, and returns a negative number if the
first belongs before the second in sorted order, a positive number if the second belongs
before the first, or zero if they are the same.

Here is a comparison function for sorting integers in increasing order:

int intcompare(int *i, int *j)
{

if (*i > *j) return (1);
if (*i < *j) return (-1);

84 4. Sorting

return (0);
}

This comparison function can be used to sort an array a, of which the first cnt
elements are occupied, as follows:

qsort((char *) a, cnt, sizeof(int), intcompare);

A more sophisticated example of qsort in action appears in Section 4.5. The name
qsort suggests that quicksort is the algorithm implemented in this library function,
although this is usually irrelevant to the user.

Note that qsort destroys the contents of the original array, so if you need to restore
the original order, make a copy or add an extra field to the record as described in
Section 4.1.

Binary search is an amazingly tricky algorithm to implement correctly under pressure.
The best solution is not to try, since the stdlib.h library contains an implementation
called bsearch(). Except for the search key, the arguments are the same as for qsort.
To search in the previously sorted array, try

bsearch(key, (char *) a, cnt, sizeof(int), intcompare);

Sorting and Searching in C++
The C++ Standard Template Library (STL), discussed in Section 2.2.1, includes meth-
ods for sorting, searching, and more. Serious C++ users should get familiar with STL.

To sort with STL, we can either use the default comparison (e.g., ≤) function defined
for the class, or override it with a special-purpose comparison function op:

void sort(RandomAccessIterator bg, RandomAccessIterator end)
void sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)

STL also provides a stable sorting routine, where keys of equal value are guaranteed
to remain in the same relative order. This can be useful if we are sorting by multiple
criteria:

void stable_sort(RandomAccessIterator bg, RandomAccessIterator end)
void stable_sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)

Other STL functions implement some of the applications of sorting described in
Section 4.1, including,

• nth element – Return the nth largest item in the container.

• set union, set intersection, set difference – Construct the union, intersec-
tion, and set difference of two containers.

• unique – Remove all consecutive duplicates.

84 4. Sorting

return (0);
}

This comparison function can be used to sort an array a, of which the first cnt
elements are occupied, as follows:

qsort((char *) a, cnt, sizeof(int), intcompare);

A more sophisticated example of qsort in action appears in Section 4.5. The name
qsort suggests that quicksort is the algorithm implemented in this library function,
although this is usually irrelevant to the user.

Note that qsort destroys the contents of the original array, so if you need to restore
the original order, make a copy or add an extra field to the record as described in
Section 4.1.

Binary search is an amazingly tricky algorithm to implement correctly under pressure.
The best solution is not to try, since the stdlib.h library contains an implementation
called bsearch(). Except for the search key, the arguments are the same as for qsort.
To search in the previously sorted array, try

bsearch(key, (char *) a, cnt, sizeof(int), intcompare);

Sorting and Searching in C++
The C++ Standard Template Library (STL), discussed in Section 2.2.1, includes meth-
ods for sorting, searching, and more. Serious C++ users should get familiar with STL.

To sort with STL, we can either use the default comparison (e.g., ≤) function defined
for the class, or override it with a special-purpose comparison function op:

void sort(RandomAccessIterator bg, RandomAccessIterator end)
void sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)

STL also provides a stable sorting routine, where keys of equal value are guaranteed
to remain in the same relative order. This can be useful if we are sorting by multiple
criteria:

void stable_sort(RandomAccessIterator bg, RandomAccessIterator end)
void stable_sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)

Other STL functions implement some of the applications of sorting described in
Section 4.1, including,

• nth element – Return the nth largest item in the container.

• set union, set intersection, set difference – Construct the union, intersec-
tion, and set difference of two containers.

• unique – Remove all consecutive duplicates.

84 4. Sorting

return (0);
}

This comparison function can be used to sort an array a, of which the first cnt
elements are occupied, as follows:

qsort((char *) a, cnt, sizeof(int), intcompare);

A more sophisticated example of qsort in action appears in Section 4.5. The name
qsort suggests that quicksort is the algorithm implemented in this library function,
although this is usually irrelevant to the user.

Note that qsort destroys the contents of the original array, so if you need to restore
the original order, make a copy or add an extra field to the record as described in
Section 4.1.

Binary search is an amazingly tricky algorithm to implement correctly under pressure.
The best solution is not to try, since the stdlib.h library contains an implementation
called bsearch(). Except for the search key, the arguments are the same as for qsort.
To search in the previously sorted array, try

bsearch(key, (char *) a, cnt, sizeof(int), intcompare);

Sorting and Searching in C++
The C++ Standard Template Library (STL), discussed in Section 2.2.1, includes meth-
ods for sorting, searching, and more. Serious C++ users should get familiar with STL.

To sort with STL, we can either use the default comparison (e.g., ≤) function defined
for the class, or override it with a special-purpose comparison function op:

void sort(RandomAccessIterator bg, RandomAccessIterator end)
void sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)

STL also provides a stable sorting routine, where keys of equal value are guaranteed
to remain in the same relative order. This can be useful if we are sorting by multiple
criteria:

void stable_sort(RandomAccessIterator bg, RandomAccessIterator end)
void stable_sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)

Other STL functions implement some of the applications of sorting described in
Section 4.1, including,

• nth element – Return the nth largest item in the container.

• set union, set intersection, set difference – Construct the union, intersec-
tion, and set difference of two containers.

• unique – Remove all consecutive duplicates.

7 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Sorting and Searching in C++

84 4. Sorting

return (0);
}

This comparison function can be used to sort an array a, of which the first cnt
elements are occupied, as follows:

qsort((char *) a, cnt, sizeof(int), intcompare);

A more sophisticated example of qsort in action appears in Section 4.5. The name
qsort suggests that quicksort is the algorithm implemented in this library function,
although this is usually irrelevant to the user.

Note that qsort destroys the contents of the original array, so if you need to restore
the original order, make a copy or add an extra field to the record as described in
Section 4.1.

Binary search is an amazingly tricky algorithm to implement correctly under pressure.
The best solution is not to try, since the stdlib.h library contains an implementation
called bsearch(). Except for the search key, the arguments are the same as for qsort.
To search in the previously sorted array, try

bsearch(key, (char *) a, cnt, sizeof(int), intcompare);

Sorting and Searching in C++
The C++ Standard Template Library (STL), discussed in Section 2.2.1, includes meth-
ods for sorting, searching, and more. Serious C++ users should get familiar with STL.

To sort with STL, we can either use the default comparison (e.g., ≤) function defined
for the class, or override it with a special-purpose comparison function op:

void sort(RandomAccessIterator bg, RandomAccessIterator end)
void sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)

STL also provides a stable sorting routine, where keys of equal value are guaranteed
to remain in the same relative order. This can be useful if we are sorting by multiple
criteria:

void stable_sort(RandomAccessIterator bg, RandomAccessIterator end)
void stable_sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)

Other STL functions implement some of the applications of sorting described in
Section 4.1, including,

• nth element – Return the nth largest item in the container.

• set union, set intersection, set difference – Construct the union, intersec-
tion, and set difference of two containers.

• unique – Remove all consecutive duplicates.

84 4. Sorting

return (0);
}

This comparison function can be used to sort an array a, of which the first cnt
elements are occupied, as follows:

qsort((char *) a, cnt, sizeof(int), intcompare);

A more sophisticated example of qsort in action appears in Section 4.5. The name
qsort suggests that quicksort is the algorithm implemented in this library function,
although this is usually irrelevant to the user.

Note that qsort destroys the contents of the original array, so if you need to restore
the original order, make a copy or add an extra field to the record as described in
Section 4.1.

Binary search is an amazingly tricky algorithm to implement correctly under pressure.
The best solution is not to try, since the stdlib.h library contains an implementation
called bsearch(). Except for the search key, the arguments are the same as for qsort.
To search in the previously sorted array, try

bsearch(key, (char *) a, cnt, sizeof(int), intcompare);

Sorting and Searching in C++
The C++ Standard Template Library (STL), discussed in Section 2.2.1, includes meth-
ods for sorting, searching, and more. Serious C++ users should get familiar with STL.

To sort with STL, we can either use the default comparison (e.g., ≤) function defined
for the class, or override it with a special-purpose comparison function op:

void sort(RandomAccessIterator bg, RandomAccessIterator end)
void sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)

STL also provides a stable sorting routine, where keys of equal value are guaranteed
to remain in the same relative order. This can be useful if we are sorting by multiple
criteria:

void stable_sort(RandomAccessIterator bg, RandomAccessIterator end)
void stable_sort(RandomAccessIterator bg, RandomAccessIterator end,

BinaryPredicate op)

Other STL functions implement some of the applications of sorting described in
Section 4.1, including,

• nth element – Return the nth largest item in the container.

• set union, set intersection, set difference – Construct the union, intersec-
tion, and set difference of two containers.

• unique – Remove all consecutive duplicates.

8 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Sorting and Searching in Java

4.5. Rating the Field 85

Sorting and Searching in Java
The java.util.Arrays class contains various methods for sorting and searching. In
particular,

static void sort(Object[] a)
static void sort(Object[] a, Comparator c)

sorts the specified array of objects into ascending order using either the natural ordering
of its elements or a specific comparator c. Stable sorts are also available.

Methods for searching a sorted array for a specified object using either the natural
comparison function or a new comparator c are also provided:

binarySearch(Object[] a, Object key)
binarySearch(Object[] a, Object key, Comparator c)

4.5 Rating the Field

Our solution to Polly’s dating difficulties revolved around making the multi-criteria
sorting step as simple as possible. First, we had to set up the basic data structures:

#include <stdio.h>
#include <string.h>

#define NAMELENGTH 30 /* maximum length of name */
#define NSUITORS 100 /* maximum number of suitors */

#define BESTHEIGHT 180 /* best height in centimeters */
#define BESTWEIGHT 75 /* best weight in kilograms */

typedef struct {
char first[NAMELENGTH]; /* suitor’s first name */
char last[NAMELENGTH]; /* suitor’s last name */
int height; /* suitor’s height */
int weight; /* suitor’s weight */

} suitor;

suitor suitors[NSUITORS]; /* database of suitors */
int nsuitors; /* number of suitors */

Then we had to read the input. Note that we did not store each fellow’s actual height
and weight! Polly’s rating criteria for heights and weights were quite fussy, revolving
around how these quantities compare to a reference height/weight instead of a usual
linear order (i.e., increasing or decreasing). Instead, we altered each height and weight
appropriately so the quantities were linearly ordered by desirability:

4.5. Rating the Field 85

Sorting and Searching in Java
The java.util.Arrays class contains various methods for sorting and searching. In
particular,

static void sort(Object[] a)
static void sort(Object[] a, Comparator c)

sorts the specified array of objects into ascending order using either the natural ordering
of its elements or a specific comparator c. Stable sorts are also available.

Methods for searching a sorted array for a specified object using either the natural
comparison function or a new comparator c are also provided:

binarySearch(Object[] a, Object key)
binarySearch(Object[] a, Object key, Comparator c)

4.5 Rating the Field

Our solution to Polly’s dating difficulties revolved around making the multi-criteria
sorting step as simple as possible. First, we had to set up the basic data structures:

#include <stdio.h>
#include <string.h>

#define NAMELENGTH 30 /* maximum length of name */
#define NSUITORS 100 /* maximum number of suitors */

#define BESTHEIGHT 180 /* best height in centimeters */
#define BESTWEIGHT 75 /* best weight in kilograms */

typedef struct {
char first[NAMELENGTH]; /* suitor’s first name */
char last[NAMELENGTH]; /* suitor’s last name */
int height; /* suitor’s height */
int weight; /* suitor’s weight */

} suitor;

suitor suitors[NSUITORS]; /* database of suitors */
int nsuitors; /* number of suitors */

Then we had to read the input. Note that we did not store each fellow’s actual height
and weight! Polly’s rating criteria for heights and weights were quite fussy, revolving
around how these quantities compare to a reference height/weight instead of a usual
linear order (i.e., increasing or decreasing). Instead, we altered each height and weight
appropriately so the quantities were linearly ordered by desirability:

9 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Rating the Field

82 4. Sorting

return(firsthigh);
}

Quicksort is interesting for several reasons. When implemented properly, it is
the fastest in-memory sorting algorithm. It is a beautiful example of the power of
recursion. The partition algorithm is useful for many tasks in its own right. For
example, how might you separate an array containing just 0’s and 1’s into one
run of each symbol?

4.3 Program Design Example: Rating the Field

Pretty Polly has no shortage of gentlemen suitors who come a’ courting. Indeed, her
biggest problem is keeping track of who the best ones are. She is smart enough to realize
that a program which ranks the men from most to least desirable would simplify her
life. She is also persuasive enough to have talked you into writing the program.

Polly really likes to dance, and has determined the optimal partner height is 180
centimeters tall. Her first criteria is finding someone who is as close as possible to this
height; whether they are a little taller or shorter doesn’t matter. Among all candidates
of the same height, she wants someone as close as possible to 75 kilograms without
going over. If all equal-height candidates are over this limit, she will take the lightest
of the bunch. If two or more people are identical by all these characteristics, sort them
by last name, then by first name if it is necessary to break the tie.

Polly is only interested in seeing the candidates ranked by name, so the input file:

George Bush 195 110
Harry Truman 180 75
Bill Clinton 180 75
John Kennedy 180 65
Ronald Reagan 165 110
Richard Nixon 170 70
Jimmy Carter 180 77

yields the following output:

Clinton, Bill
Truman, Harry
Kennedy, John
Carter, Jimmy
Nixon, Richard
Bush, George
Reagan, Ronald

———————————— Solution starts below ————————————

10 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Rating the Field

82 4. Sorting

return(firsthigh);
}

Quicksort is interesting for several reasons. When implemented properly, it is
the fastest in-memory sorting algorithm. It is a beautiful example of the power of
recursion. The partition algorithm is useful for many tasks in its own right. For
example, how might you separate an array containing just 0’s and 1’s into one
run of each symbol?

4.3 Program Design Example: Rating the Field

Pretty Polly has no shortage of gentlemen suitors who come a’ courting. Indeed, her
biggest problem is keeping track of who the best ones are. She is smart enough to realize
that a program which ranks the men from most to least desirable would simplify her
life. She is also persuasive enough to have talked you into writing the program.

Polly really likes to dance, and has determined the optimal partner height is 180
centimeters tall. Her first criteria is finding someone who is as close as possible to this
height; whether they are a little taller or shorter doesn’t matter. Among all candidates
of the same height, she wants someone as close as possible to 75 kilograms without
going over. If all equal-height candidates are over this limit, she will take the lightest
of the bunch. If two or more people are identical by all these characteristics, sort them
by last name, then by first name if it is necessary to break the tie.

Polly is only interested in seeing the candidates ranked by name, so the input file:

George Bush 195 110
Harry Truman 180 75
Bill Clinton 180 75
John Kennedy 180 65
Ronald Reagan 165 110
Richard Nixon 170 70
Jimmy Carter 180 77

yields the following output:

Clinton, Bill
Truman, Harry
Kennedy, John
Carter, Jimmy
Nixon, Richard
Bush, George
Reagan, Ronald

———————————— Solution starts below ————————————

11 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Rating the Field

4.5. Rating the Field 85

Sorting and Searching in Java
The java.util.Arrays class contains various methods for sorting and searching. In
particular,

static void sort(Object[] a)
static void sort(Object[] a, Comparator c)

sorts the specified array of objects into ascending order using either the natural ordering
of its elements or a specific comparator c. Stable sorts are also available.

Methods for searching a sorted array for a specified object using either the natural
comparison function or a new comparator c are also provided:

binarySearch(Object[] a, Object key)
binarySearch(Object[] a, Object key, Comparator c)

4.5 Rating the Field

Our solution to Polly’s dating difficulties revolved around making the multi-criteria
sorting step as simple as possible. First, we had to set up the basic data structures:

#include <stdio.h>
#include <string.h>

#define NAMELENGTH 30 /* maximum length of name */
#define NSUITORS 100 /* maximum number of suitors */

#define BESTHEIGHT 180 /* best height in centimeters */
#define BESTWEIGHT 75 /* best weight in kilograms */

typedef struct {
char first[NAMELENGTH]; /* suitor’s first name */
char last[NAMELENGTH]; /* suitor’s last name */
int height; /* suitor’s height */
int weight; /* suitor’s weight */

} suitor;

suitor suitors[NSUITORS]; /* database of suitors */
int nsuitors; /* number of suitors */

Then we had to read the input. Note that we did not store each fellow’s actual height
and weight! Polly’s rating criteria for heights and weights were quite fussy, revolving
around how these quantities compare to a reference height/weight instead of a usual
linear order (i.e., increasing or decreasing). Instead, we altered each height and weight
appropriately so the quantities were linearly ordered by desirability:

12 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Rating the Field
86 4. Sorting

read_suitors()
{

char first[NAMELENGTH], last[NAMELENGTH];
int height, weight;

nsuitors = 0;

while (scanf("%s %s %d %d\n",suitors[nsuitors].first,
suitors[nsuitors].last, &height, &weight) != EOF) {
suitors[nsuitors].height = abs(height - BESTHEIGHT);
if (weight > BESTWEIGHT)

suitors[nsuitors].weight = weight - BESTWEIGHT;
else

suitors[nsuitors].weight = - weight;

nsuitors ++;
}

}

Finally, observe that we used scanf to read the first and last names as tokens, instead
of character by character.

The critical comparison routine takes a pair of suitors a and b, and decides whether
a is better, b is better, or they are of equal rank. To satisfy the demands of qsort, we
must assign −1, 1, and 0 in these three cases, respectively. The following comparison
function does the job:

int suitor_compare(suitor *a, suitor *b)
{

int result; /* result of comparison */

if (a->height < b->height) return(-1);
if (a->height > b->height) return(1);

if (a->weight < b->weight) return(-1);
if (a->weight > b->weight) return(1);

if ((result=strcmp(a->last,b->last)) != 0) return result;

return(strcmp(a->first,b->first));
}

With the comparison function and input routines in place, all that remains is a driver
program which actually calls qsort and produces the output:

main()
{

int i; /* counter */

13 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Rating the Field

86 4. Sorting

read_suitors()
{

char first[NAMELENGTH], last[NAMELENGTH];
int height, weight;

nsuitors = 0;

while (scanf("%s %s %d %d\n",suitors[nsuitors].first,
suitors[nsuitors].last, &height, &weight) != EOF) {
suitors[nsuitors].height = abs(height - BESTHEIGHT);
if (weight > BESTWEIGHT)

suitors[nsuitors].weight = weight - BESTWEIGHT;
else

suitors[nsuitors].weight = - weight;

nsuitors ++;
}

}

Finally, observe that we used scanf to read the first and last names as tokens, instead
of character by character.

The critical comparison routine takes a pair of suitors a and b, and decides whether
a is better, b is better, or they are of equal rank. To satisfy the demands of qsort, we
must assign −1, 1, and 0 in these three cases, respectively. The following comparison
function does the job:

int suitor_compare(suitor *a, suitor *b)
{

int result; /* result of comparison */

if (a->height < b->height) return(-1);
if (a->height > b->height) return(1);

if (a->weight < b->weight) return(-1);
if (a->weight > b->weight) return(1);

if ((result=strcmp(a->last,b->last)) != 0) return result;

return(strcmp(a->first,b->first));
}

With the comparison function and input routines in place, all that remains is a driver
program which actually calls qsort and produces the output:

main()
{

int i; /* counter */

14 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Rating the Field

86 4. Sorting

read_suitors()
{

char first[NAMELENGTH], last[NAMELENGTH];
int height, weight;

nsuitors = 0;

while (scanf("%s %s %d %d\n",suitors[nsuitors].first,
suitors[nsuitors].last, &height, &weight) != EOF) {
suitors[nsuitors].height = abs(height - BESTHEIGHT);
if (weight > BESTWEIGHT)

suitors[nsuitors].weight = weight - BESTWEIGHT;
else

suitors[nsuitors].weight = - weight;

nsuitors ++;
}

}

Finally, observe that we used scanf to read the first and last names as tokens, instead
of character by character.

The critical comparison routine takes a pair of suitors a and b, and decides whether
a is better, b is better, or they are of equal rank. To satisfy the demands of qsort, we
must assign −1, 1, and 0 in these three cases, respectively. The following comparison
function does the job:

int suitor_compare(suitor *a, suitor *b)
{

int result; /* result of comparison */

if (a->height < b->height) return(-1);
if (a->height > b->height) return(1);

if (a->weight < b->weight) return(-1);
if (a->weight > b->weight) return(1);

if ((result=strcmp(a->last,b->last)) != 0) return result;

return(strcmp(a->first,b->first));
}

With the comparison function and input routines in place, all that remains is a driver
program which actually calls qsort and produces the output:

main()
{

int i; /* counter */
4.5. Rating the Field 87

int suitor_compare();

read_suitors();

qsort(suitors, nsuitors, sizeof(suitor), suitor_compare);

for (i=0; i<nsuitors; i++)
printf("%s, %s\n",suitors[i].last, suitors[i].first);

}

15 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Vito’s Family

88 4. Sorting

4.6 Problems

4.6.1 Vito’s Family
PC/UVa IDs: 110401/10041, Popularity: A, Success rate: high Level: 1

The famous gangster Vito Deadstone is moving to New York. He has a very big
family there, all of them living on Lamafia Avenue. Since he will visit all his relatives
very often, he wants to find a house close to them.

Indeed, Vito wants to minimize the total distance to all of his relatives and has
blackmailed you to write a program that solves his problem.

Input
The input consists of several test cases. The first line contains the number of test cases.

For each test case you will be given the integer number of relatives r (0 < r < 500) and
the street numbers (also integers) s1, s2, . . . , si, . . . , sr where they live (0 < si < 30, 000).
Note that several relatives might live at the same street number.

Output
For each test case, your program must write the minimal sum of distances from the
optimal Vito’s house to each one of his relatives. The distance between two street
numbers si and sj is dij = |si − sj |.

Sample Input
2
2 2 4
3 2 4 6

Sample Output
2
4

88 4. Sorting

4.6 Problems

4.6.1 Vito’s Family
PC/UVa IDs: 110401/10041, Popularity: A, Success rate: high Level: 1

The famous gangster Vito Deadstone is moving to New York. He has a very big
family there, all of them living on Lamafia Avenue. Since he will visit all his relatives
very often, he wants to find a house close to them.

Indeed, Vito wants to minimize the total distance to all of his relatives and has
blackmailed you to write a program that solves his problem.

Input
The input consists of several test cases. The first line contains the number of test cases.

For each test case you will be given the integer number of relatives r (0 < r < 500) and
the street numbers (also integers) s1, s2, . . . , si, . . . , sr where they live (0 < si < 30, 000).
Note that several relatives might live at the same street number.

Output
For each test case, your program must write the minimal sum of distances from the
optimal Vito’s house to each one of his relatives. The distance between two street
numbers si and sj is dij = |si − sj |.

Sample Input
2
2 2 4
3 2 4 6

Sample Output
2
4

16 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Vito’s Family

88 4. Sorting

4.6 Problems

4.6.1 Vito’s Family
PC/UVa IDs: 110401/10041, Popularity: A, Success rate: high Level: 1

The famous gangster Vito Deadstone is moving to New York. He has a very big
family there, all of them living on Lamafia Avenue. Since he will visit all his relatives
very often, he wants to find a house close to them.

Indeed, Vito wants to minimize the total distance to all of his relatives and has
blackmailed you to write a program that solves his problem.

Input
The input consists of several test cases. The first line contains the number of test cases.

For each test case you will be given the integer number of relatives r (0 < r < 500) and
the street numbers (also integers) s1, s2, . . . , si, . . . , sr where they live (0 < si < 30, 000).
Note that several relatives might live at the same street number.

Output
For each test case, your program must write the minimal sum of distances from the
optimal Vito’s house to each one of his relatives. The distance between two street
numbers si and sj is dij = |si − sj |.

Sample Input
2
2 2 4
3 2 4 6

Sample Output
2
4

17 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Bridge
4.6. Problems 91

4.6.3 Bridge
PC/UVa IDs: 110403/10037, Popularity: B, Success rate: low Level: 3

A group of n people wish to cross a bridge at night. At most two people may cross at
any time, and each group must have a flashlight. Only one flashlight is available among
the n people, so some sort of shuttle arrangement must be arranged in order to return
the flashlight so that more people may cross.

Each person has a different crossing speed; the speed of a group is determined by the
speed of the slower member. Your job is to determine a strategy that gets all n people
across the bridge in the minimum time.

Input
The input begins with a single positive integer on a line by itself indicating the number
of test cases, followed by a blank line. There is also a blank line between each two
consecutive inputs.

The first line of each case contains n, followed by n lines giving the crossing times
for each of the people. There are not more than 1,000 people and nobody takes more
than 100 seconds to cross the bridge.

Output
For each test case, the first line of output must report the total number of seconds
required for all n people to cross the bridge. Subsequent lines give a strategy for achiev-
ing this time. Each line contains either one or two integers, indicating which person
or people form the next group to cross. Each person is indicated by the crossing time
specified in the input. Although many people may have the same crossing time, this
ambiguity is of no consequence.

Note that the crossings alternate directions, as it is necessary to return the flashlight
so that more may cross. If more than one strategy yields the minimal time, any one
will do.

The output of two consecutive cases must be separated by a blank line.

Sample Input
1

4
1
2
5
10

Sample Output
17
1 2
1
5 10
2
1 2

18 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Bridge

4.6. Problems 91

4.6.3 Bridge
PC/UVa IDs: 110403/10037, Popularity: B, Success rate: low Level: 3

A group of n people wish to cross a bridge at night. At most two people may cross at
any time, and each group must have a flashlight. Only one flashlight is available among
the n people, so some sort of shuttle arrangement must be arranged in order to return
the flashlight so that more people may cross.

Each person has a different crossing speed; the speed of a group is determined by the
speed of the slower member. Your job is to determine a strategy that gets all n people
across the bridge in the minimum time.

Input
The input begins with a single positive integer on a line by itself indicating the number
of test cases, followed by a blank line. There is also a blank line between each two
consecutive inputs.

The first line of each case contains n, followed by n lines giving the crossing times
for each of the people. There are not more than 1,000 people and nobody takes more
than 100 seconds to cross the bridge.

Output
For each test case, the first line of output must report the total number of seconds
required for all n people to cross the bridge. Subsequent lines give a strategy for achiev-
ing this time. Each line contains either one or two integers, indicating which person
or people form the next group to cross. Each person is indicated by the crossing time
specified in the input. Although many people may have the same crossing time, this
ambiguity is of no consequence.

Note that the crossings alternate directions, as it is necessary to return the flashlight
so that more may cross. If more than one strategy yields the minimal time, any one
will do.

The output of two consecutive cases must be separated by a blank line.

Sample Input
1

4
1
2
5
10

Sample Output
17
1 2
1
5 10
2
1 2

19 SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Bridge

4.6. Problems 91

4.6.3 Bridge
PC/UVa IDs: 110403/10037, Popularity: B, Success rate: low Level: 3

A group of n people wish to cross a bridge at night. At most two people may cross at
any time, and each group must have a flashlight. Only one flashlight is available among
the n people, so some sort of shuttle arrangement must be arranged in order to return
the flashlight so that more people may cross.

Each person has a different crossing speed; the speed of a group is determined by the
speed of the slower member. Your job is to determine a strategy that gets all n people
across the bridge in the minimum time.

Input
The input begins with a single positive integer on a line by itself indicating the number
of test cases, followed by a blank line. There is also a blank line between each two
consecutive inputs.

The first line of each case contains n, followed by n lines giving the crossing times
for each of the people. There are not more than 1,000 people and nobody takes more
than 100 seconds to cross the bridge.

Output
For each test case, the first line of output must report the total number of seconds
required for all n people to cross the bridge. Subsequent lines give a strategy for achiev-
ing this time. Each line contains either one or two integers, indicating which person
or people form the next group to cross. Each person is indicated by the crossing time
specified in the input. Although many people may have the same crossing time, this
ambiguity is of no consequence.

Note that the crossings alternate directions, as it is necessary to return the flashlight
so that more may cross. If more than one strategy yields the minimal time, any one
will do.

The output of two consecutive cases must be separated by a blank line.

Sample Input
1

4
1
2
5
10

Sample Output
17
1 2
1
5 10
2
1 2

