Lecture 4
Sorting

Euiseong Seo
(euiseong@skku.edu)

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

= One of the basic programming techniques
" Tons of existing approaches

* Time complexity

« Space complexity

* Other properties
= Applicable to many problems

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

- Uniqueness Testing

= Deleting Duplications

= Median/Selection

" Frequency Counting

= Reconstructing the Original Order
= Set Intersection/Union

* Finding a Target Pair

= Efficient Searching

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

.

C 90 rrJfU Algorithms

" Insertion sort
= Merge sort

= Heap sort

" Quick sort

= Counting Sort
= Bucket Sort

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

ria Sorting

= How can we break ties in sorting using
multiple criteria?

= To use a complicated comparison function
that combines all the keys to break ties

= To use repeated passes through a stable
sorting function

* In reverse order of priorities of the keys

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

oorting LI or ary Func

#include <stdlib.h>

void gsort(void *base, size_t nel, size_t width,
int (*compare) (const void *, const void *));

int intcompare(int *i, int *j)

{
if (*i > *j) return (1);
if (¥i < *j) return (-1);
return (0);

}

gsort((char *) a, cnt, sizeof(int), intcompare);

bsearch(key, (char *) a, cnt, sizeof(int), intcompare);

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

odorting

void sort(RandomAccessIterator bg, RandomAccessIterator end)
void sort(RandomAccessIterator bg, RandomAccessIterator end,
BinaryPredicate op)

void stable_sort(RandomAccessIterator bg, RandomAccessIterator end)
void stable_sort(RandomAccessIterator bg, RandomAccessIterator end,
BinaryPredicate op)

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

static void sort(Object[] a)
static void sort(Object[] a, Comparator c)

binarySearch(Object[] a, Object key)
binarySearch(Object[] a, Object key, Comparator c)

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

: Rating the Field

Pretty Polly has no shortage of gentlemen suitors who come a’ courting. Indeed, her
biggest problem is keeping track of who the best ones are. She is smart enough to realize
that a program which ranks the men from most to least desirable would simplify her
life. She is also persuasive enough to have talked you into writing the program.

Polly really likes to dance, and has determined the optimal partner height is 180
centimeters tall. Her first criteria is finding someone who is as close as possible to this
height; whether they are a little taller or shorter doesn’t matter. Among all candidates
of the same height, she wants someone as close as possible to 75 kilograms without
going over. If all equal-height candidates are over this limit, she will take the lightest
of the bunch. If two or more people are identical by all these characteristics, sort them
by last name, then by first name if it is necessary to break the tie.

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Polly is only interested in seeing the candidates ranked by name, so the input file:

George Bush
Harry Truman
Bill Clinton
John Kennedy
Ronald Reagan
Richard Nixon
Jimmy Carter

yields the following output:

Clinton, Bill
Truman, Harry
Kennedy, John
Carter, Jimmy
Nixon, Richard
Bush, George
Reagan, Ronald

195
180
180
180
165
170
180

110
75
75
65
110
70
77

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

— et
CE—

Hfo blem:

#include <stdio.h>
#include <string.h>

#define NAMELENGTH 30 /* maximum length of name */
#define NSUITORS 100 /* maximum number of suitors */
#define BESTHEIGHT 180 /* best height in centimeters */
#define BESTWEIGHT 75 /* best weight in kilograms */

typedef struct {

char first[NAMELENGTH] ; /* suitor’s first name x*/
char last[NAMELENGTH] ; /* suitor’s last name */
int height; /* suitor’s height */
int weight; /* suitor’s weight */
} suitor;
suitor suitors[NSUITORS]; /* database of suitors */
int nsuitors; /* number of suitors x*x/

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

°To blem: ~ating

e —

read_suitors()

{
char first[NAMELENGTH], last[NAMELENGTH] ;
int height, weight;
nsuitors = O;
while (scanf("%s %s %d %d\n",suitors[nsuitors].first,
suitors[nsuitors].last, &height, &weight) != EOF) {
suitors[nsuitors] .height = abs(height - BESTHEIGHT) ;
if (weight > BESTWEIGHT)
suitors[nsuitors] .weight = weight - BESTWEIGHT;
else
suitors[nsuitors].weight = - weight;
nsuitors ++;
}
}

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Rating

int suitor_compare(suitor *a, suitor *b)

int result; /* result of comparison */

if (a->height < b->height) return(-1);
if (a->height > b->height) return(l);

if (a->weight < b->weight) return(-1);
if (a->weight > b->weight) return(l);

if ((result=strcmp(a->last,b->last)) != 0) return result;

return(strcmp(a->first,b->first));

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Rati

main ()
{

int 1i; /* counter x/

int suitor_compare() ;

read_suitors();

gsort(suitors, nsuitors, sizeof(suitor), suitor_compare);

for (i=0; i<nsuitors; i++)

printf("%s, %s\n",suitors[i].last, suitors[i].first);

+

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: /i 5 Family <«

The famous gangster Vito Deadstone is moving to New York. He has a very big
family there, all of them living on Lamafia Avenue. Since he will visit all his relatives

very often, he wants to find a house close to them.
Indeed, Vito wants to minimize the total distance to all of his relatives and has

blackmailed you to write a program that solves his problem.

Input

The input consists of several test cases. The first line contains the number of test cases.

For each test case you will be given the integer number of relatives r (0 < r < 500) and
the street numbers (also integers) s1, So, ..., S;, ..., S, where they live (0 < s; < 30, 000).
Note that several relatives might live at the same street number.

Output

For each test case, your program must write the minimal sum of distances from the
optimal Vito’s house to each one of his relatives. The distance between two street

numbers s; and s; is d;; = |s; — ;]

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Vi

Sample Input

w NN
N DN
NGNS

Sample Output

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Problem: Bridge

gE——

B

A group of n people wish to cross a bridge at night. At most two people may cross at
any time, and each group must have a flashlight. Only one flashlight is available among
the n people, so some sort of shuttle arrangement must be arranged in order to return
the flashlight so that more people may cross.

Each person has a different crossing speed; the speed of a group is determined by the
speed of the slower member. Your job is to determine a strategy that gets all n people
across the bridge in the minimum time.

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

Input

The input begins with a single positive integer on a line by itself indicating the number
of test cases, followed by a blank line. There is also a blank line between each two
consecutive inputs.

The first line of each case contains n, followed by n lines giving the crossing times
for each of the people. There are not more than 1,000 people and nobody takes more
than 100 seconds to cross the bridge.

Output

For each test case, the first line of output must report the total number of seconds
required for all n people to cross the bridge. Subsequent lines give a strategy for achiev-
ing this time. Each line contains either one or two integers, indicating which person
or people form the next group to cross. Each person is indicated by the crossing time
specified in the input. Although many people may have the same crossing time, this
ambiguity is of no consequence.

Note that the crossings alternate directions, as it is necessary to return the flashlight
so that more may cross. If more than one strategy yields the minimal time, any one
will do.

The output of two consecutive cases must be separated by a blank line.

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

—

Problem: B

Sample Input Sample Output
1 17
12
4 1
1 5 10
2 2
S} 12
10

SWE2004: Principles in Programming | Spring 2014 | Euiseong Seo (euiseong@skku.edu)

