Software Practice 1 -
OOQOP (1) — Class and Method

= What is OOP?

= Defining Classes

= Using Classes

= References vs. Values
= Encapsulate

Prof. Joonwon Lee

T.A. Jaehyun Song
Jongseok Kim

T.A. Sujin Oh
Junseong Lee

(42)

(43)
1/61

Objects in real world

= Represent the real world

Baby

2161

Objects in real world

= Represent the real world

Baby

Name
Gender
Weight

Poops

3/61

Objects in real world

Baby

4 /61

Objects in real world

Name Name Name
Weight Weight Weight

Gender Gender Gender More Babies

cry cry cry

Babyl Baby?2 Baby3

5/61

Objects in real world

Babyl

-

Babies

Nurses

_ J

Nursery

Baby3

6/61

Objects in real world

Nursel Babyl
Babies
Nurse2
Nurses
_/
Nurse3 Baby3
Nursery

7161

Objects in real world

Nurse3
Nursery

Hospital

8 /61

Objects in real world

= What do we need to model this objects
with programming language?

Nursel

Babies

Nurses

Hospital 9/61

Object Oriented Programming

= Definition

* A method of programming based on a hierarchy of
classes, and well-defined and cooperating objects.

= Class — a structure that defines

* the fields to store the data
* the methods to work on that data

= Object — an executable copy of a class

10 /61

Object Oriented Programming

= A class

 can be inherited by only one other class
» can implement one or more interfaces

= An object
* can establish the relationship with other objects
through the reference

 encapsulates some fields or methods
for hiding them from other objects

11 /61

DEFINING CLASSES

12 /61

Class definition

public class Baby {
String name;
boolean gender;
double weight;
int numPoops = 0;

void poop() {
numPoops += 1;
System.out.println (“Dear mother, “ +
“I have pooped. Ready the diaper.”);

13 /61

Let’s declare a baby!

public class Baby {

Fields

14 / 61

Baby fields

public class Baby {

TYPE var_name;
OR

TYPE var_name = some value;

15/61

Baby fields

public class Baby {
String name;
boolean gender;
double weight = 5.0;
int numPoops = 0O;

16 /61

Baby Siblings?

public class Baby {
String name;
boolean gender;
double weight = 5.0;
int numPoops = 0©;
XXXXX YYYYY;

17 /61

Baby Siblings?

public class Baby {
String name;
boolean gender;
double weight = 5.0;
int numPoops = 0O;
Baby[] siblings;

18 /61

Baby methods

public class Baby {
String name = “Slim Shady”;

void sayHi() {
System.out.println (

“Hi, my name is.. “ + name);

19 /61

Baby methods

public class Baby {
double weight = 5.0;

void eat(double foodWeight) {
if (foodWeight >= 0 &&
foodWeight < weight) {
weight += foodWeight;

20/61

Baby class

public class Baby {
String name;
boolean gender;
double weight;
int numPoops = 0©;
Baby|[] siblings;

void sayHi() {...}
void eat(double foodWeight) {...}

21 /61

Ok, let’s make this baby!

Baby myBaby = new Baby();

But what about his/her name? gender?

22 161

Constructors

public class CLASSNAME {
CLASSNAME () {

}

CLASSNAME ([ARGUMENTS]) {
}

CLASSNAME obj1
CLASSNAME ob3j2

new CLASSNAME();
new CLASSNAME ([ARGUMENTS]);

23 /61

Constructors

= Constructor name == the class name
= No return type — never returns anything
= Usually initialize fields

= All classes need at least one constructor

* If you don’t write one, defaults to

CLASSNAME () {
}

24 /61

Baby constructor

public class Baby {
String name;
boolean gender;
Baby(String myName, boolean myGender) {
name = myName;

gender = myGender;

25 /61

Final Baby class

public class Baby {
String name;
boolean gender;
double weight;
int numPoops = 0;
Baby[] siblings;

Baby() {...}
void sayHi() {...}

void eat(double foodWeight) {...}

26 / 61

USING CLASSES

27 161

Classes and Instances

// class Definition

public class Baby { .. }

// class Instances
Baby shiloh = new Baby (“Shilo Jolie-Pitt”, true);
Baby knox = new Baby (“Knox Jolie-Pitt”, true);

28 /161

Accessing fields

= Object.FIELDNAME

Baby shiloh = new Baby (“Shiloh Jolie-Pitt”, true);
System.out.println (shiloh.name);

System.out.println (shiloh.numPoops);

29 /61

Using methods

= Object. METHODNAME([ARGUMENTS])

Baby shiloh = new Baby (“Shiloh Jolie-Pitt”, true);
shiloh.sayHi(); // “Hi, my name is.. Shiloh Jolie-Pitt”
shiloh.eat(1);

30/61

REFERENCES VS. VALUES

31/61

Primitives vs. References

* Primitive types are basic java types

* Int, long, double, boolean, char, short, byte, float
* The actual values are stored in the variable

= Reference types are arrays and objects

* Class, Interface, Array, Enum, ETC
* EX) String, int[], Baby, ...

32 /61

How java stores primitives

* Variables are like fixed size cups

= Primitives are small enough that they just
fit iInto the cup

INt double char boolean

\\n///

33/61

How java stores objects

= Objects are too big to fit in a variable

« Stored somewhere else
* Variable stores an address that locates the object

@

34 /61

How java stores objects

= Objects are too big to fit in a variable

« Stored somewhere else
* Variable stores an address that locates the object

Object’s
location

35/61

References

= The object’s location is called a reference

= == compares the references

Baby shilohl = new Baby(“Shiloh”);
Baby shiloh2 = new Baby(“Shiloh™);
Does shilohl == shiloh2?

36 /61

References

= The object’s location is called a reference

= == compares the references

h”);
h”);

Baby shi

Baby shi

37 /61

References

Baby shilohl = new Baby(“Shiloh”);
Baby shiloh2 = new Baby(“Shiloh™);

shilohl shiloh2

38 /61

References

Baby shilohl = new Baby(“Shiloh”);
Baby shiloh2 = new Baby(“Shiloh™);

shilohl shiloh2

39/61

Relations between objects

1. using ==
* shilohl == shiloh2
- Check two variables reference exactly same
2. using field
* shilohl.name == shiloh2.name
Compare a field of the object
3. using user-defined method

 shilohl.equals (shiloh2)

« Used when the objects are different, but determine the
same or not by the fields stored in the object

40 / 61

References

= Using = updates the reference

babyl = baby2; ?
babyl baby?2
object object

babyl baby?2

41 /61

References

= Using = updates the reference

babyl = baby2;

babyl baby?2
object object

babyl baby?2

42 | 61

References

Baby myBaby = new Baby(“Davy”, true);

43 |/ 61

References

Baby myBaby = new Baby(“Davy”, true);

“David”;

myBaby .name

44 | 61

References

Baby myBaby = new Baby(“Davy”, true);

“David”;

myBaby .name

45 / 61

References

= Using [] or .

* Follows the reference to the object
- May modify the object, but never the reference

= Imagine
* Following directions to a house
* Moving the furniture around

= Analogous to

* Following the reference to an object
» Changing fields in the object

46 / 61

Self reference

= Java class has a special way to access itself

class Baby {
String|[] words;

void remember (String[] words) {
String word;

for (word : words) words[top++] = word; /] ??2?2P?

47 | 61

Self reference

= Java class has a special way to access itself

class Baby {
String|[] words;

void remember (String[] words) {
String word;

for (word : words) this.words[top++] = word; //]

48 / 61

Methods and references

void doSomething(int x, int[] ys, Baby b) {

X = 99;
ys[@] = 99;
b.name = “99”;

}

int 1 = 0;

int[] 3 =40 };

Baby k = new Baby(“50”, true);
doSomething (i, j, k);

i=7? j[oe] = ? k.name = ?

49 / 61

ENCAPSULATE

50/61

Encapsulation

* [n real world, there are huge # of objects
and all of them have privacy.

= Electric objects, too!

51/61

Public and Private

= public

 Able to access/modify it whoever having the object

public class Baby {
public String nickname;

public class Stranger {
void makeNicknameOf (Baby b) {
b.nickname = “cuty”;

52 /61

Public and Private

= private
* Only the object itself can access it

public class Baby {
private String nickname;

public class Stranger {
void makeNicknameOf (Baby b) {
b.nickname = “cuty”; // Error!

53/61

How to access private data?

public class Baby {

private String nickname;

public void setNickname (String nickname, Object o) {
// check if the object is instance of [Stranger] or not
if (o instanceOf Stranger) {
return;

}

this.nickname = nickname;

public class Stranger {
void makeNicknameOf (Baby b) {

b.setNickname (“cuty”, this);

54 /61

Then, what is String in java?

= Built-in class for handling the sequence of characters in
high level abstraction

= Usage

String name = “Simon”’;
char[] data = {‘s’, ‘i’, ‘n’, ‘g’, ‘1°, ‘e’};

String state = new String (data);

// String concatenate

< »

System.out.println (name + “ is a + state); // Simon is single
// access the substring with the range of indexes
System.out.println (state.substring (1)); // ingle

System.out.println (state.substring (2,4)); // ngl

55/61

Then, what is String in java?

= Built-in class for handling the sequence of characters in
high level abstraction

= Usage

String name = “Simon”’;
char[] data = {‘s’, ‘i’, ‘n’, ‘g’, ‘1°, ‘e’};

String state = new String (data);

// comparison
System.out.println (name == “Simon”); // false

System.out.println (name.compareTo (“Simon”)); // true

// get length of a string
System.out.println (name.length ()); // 5

56 /61

[Lab - Practice #2]

= Modeling Book and Libraries

* class Book {}
* class Library {}

= Books can be

* borrowed
* returned

= Library

* keeps track of books
* Hint: use Book(]

57 161

[Lab - Practice #2]

= Four books (each book count is one)

- Beauty and Beast

* Helen Keller
 Gulliver’s Travels

* The Three Little Pigs

= Three people

« Sam
« Susan
* John

58 /61

[Lab - Practice #2]

[2Z Problems @ Javadoc [E, Declaration |2 Console 22

Lab02 [Java Application] fusr/lib/jvm/java-8-oracle/bin/fjava (2018. 3. 19. 2 F 1:38:45)
0. Exit

it = Skeleton code Is
uploaded on i-Campus

Please choose number: 1

Beauty and Beast is valid
Helen Keller is valid
Gulliver's Travels is valid
The Three Little Pigs is valid

0. Exit

1. Print Library Status
2. Borrow Book
3.

= Fill in the Book, Library
class & main function

Books: 1.Beauty and Beast 2.Helen Keller 3.Gulliver's Travels 4.The Three Little Pigs

John succeeds to borrow Helen Keller

Exit
Print Library Status
Borrow Book

e = | eft image Is console

Please choose number: I

1:Ih0 are you? 1. Sam 2.Susan 3. John O u t p u t eX am p I e

Books: 1.Beauty and Beast 2.Helen Keller 3.Gulliver's Travels 4.The Three Little Pigs

0.
1.
2.
3.

John succeeds to return Helen Keller

Exit
Print Library Status
Borrow Book

Return Book
Please choose number: 59 / 6 1

0.
1.
2.
3.

[Submit]

= Upload to 1-Campus

- Compress your project directory to zip file
* File name: studentID |ab02.zip

= Due date

* Today 23:59:59
« Class 42 (3/19 Monday)
« Class 43 (3/21 Wednesday)

 Penalty: -10% of each lab score per one day

60 /61

voger v rwmesimsimes

[Project Export]

» [Myal Google Web Toolkit v
» & Proj New g

p & Sc«w‘ Go Into .
. A
b ¥ Web)

Open in New Window 1
Open Type Hierarchy F4
Show In Alt+Shift+\W »

Copy Ctrl+C
Copy Qualified Name

Paste Ctrl«V
Delete Delete

o=
(v}

X B i@

Remove from Context Ctri+Alt+Shift+Down
Build Path »
Source Alt+Shift+S »

Refactor Alt+Shift«T »

2o [mport

ing Export.. N

-~ -

1. Click mouse right button
at project you want to
export & choose Export

2. Choose General >
File system and click
next button

@ o Export

1| select ﬂ

Export resources to the local file system. H

Select an export wizard:

type filter text a

~ = General
& Ant BuildFiles
JEArchive File
Hpreferences

» = Install

i Java

} =Run/Debug

» = Tasks

Y= Team

» = XML

@ <Back Next > Cancel

@ 0 Export
File system

Export resources to the local file system.

- v #class_and_Object [¥ classpath
L]

» i2FDay01

Filter Types... Select All Deselect All

_project

To directory: | /homefjaeh

options
") Overwrite existing files without warning
*) Create directory structure for files

© Create only selected directeries

") Resolve and export linked resources

@ <Back

~ Browse...
—

Next > Cancel Finish

3. Designate save
directory path and
click Finish button

61 /61

