Software Practice 1 -
Socket

* Terms of socket programming

= Socket

* Implementation (TCP, UDP)

= Socket with multithread
= Serialization

= Lab practice

Prof. Joonwon Lee

T.A. Jaehyun Song
Jongseok Kim

T.A. Sujin Oh
Junseong Lee

(42)

(43)

Terms of Network

= Packet

A formatted unit of data carried by a packet-switched
network

= Acknowledgement (ack)

A signal passed between communicating processes or
computers to signify acknowledgement, or receipt of
response, as a part of a communications protocol

Terms of Network

* Internet Protocol (IP)

* [P has the task of delivering packets from the source
host to the destination host solely based on the ip
addresses in the packet header

« Example of network address
o “111.222.333.444" or “skku.edu” or “localhost”

= Port

* An endpoint of communication in an operating system

* While the term is used for receiver connectors on
hardware devices, in software it is a logical construct
that identifies a specific process or a type of network
service

Terms of Network

* Transmission Control Protocol (TCP)

« TCP provides reliable, ordered, and error-checked
delivery of a stream of octets between applications
running on hosts communicating by an IP network

= User Datagram Protocol (UDP)

* UDP uses a simple connectionless transmission
model with a minimum of protocol mechanism

* There is no guarantee of reliability, delivery,
ordering, or duplicate protection

Terms of Network

= Server

« A computer program or a device that provides
functionality for other programs or devices, called
clients

= Client

A piece of computer hardware or software that
accesses a service made available by a server

—\

D Internet) —
Cllents

—{lJa

l:li / Server

TCP versus UDP
e Juop

Protocol

I/O stream

Comm. type

Transport reliability

Packet is called as

Connection oriented
protocol

Connection in byte
stream

Not support multicasting
or broadcasting

Provide error control
and flow control

Segment

Connection-less protocol

Connection in message
stream

Support both

Not provide any of them

Datagram

TCP versus UDP

-~

TCP (connection oriented)

o= Q

Error!

Data is corrupted, please resend.
& >

U D P (connectionless)

D= D

Not all data is present.

Do not resend.
&)

Socket

= An internal endpoint for sending or receiving
data at a single node in a computer network

= Concretely, it is a representation of this endpoint
iIn networking software, such as an entry in a
table, and is a form of system resource

e

Socket programming

= TCP version

= § steps for communication

1.

arwbd

Create server
Create client
Establish connection
Data transport
Close connection

Examples are written without try-catch

Process of TCP

Client

n#‘“
'Y aCk‘
ack { TIME

Java class for TCP

= ServerSocket

* http://docs.oracle.com/javase///docs/api/java/net/S
erverSocket.html?is-external=true

= Socket

* https://docs.oracle.com/javase/7/docs/api/java/net/
Socket.html

TCP server side

ServerSocket ss = new ServerSocket(5000);

while (true) {
Socket soc = ss.accept();
OutputStream out = soc.getOutputStream();
DataOutputStream dos = new DataOutputStream (out);

dos.writeUTF ("message from server");

dos.close ();
soc.close ();

TCP client side

String serverIP = "localhost”;
Socket soc = new Socket(serverIP, 5000);

InputStream in = soc.getInputStream();
DataInputStream dis = new DataInputStream (in);

System.out.println (dis.readUTF ());

dis.close();
soc.close();

Socket programming

= UDP version

= 4 steps for communication

1. Create server
2. Create client
3. Request data
4. Receive data

= Examples are written without try-catch

Java class for UDP

= DatagramSocket

* http://docs.oracle.com/javase///docs/api/java/net/D
atagramSocket.html?is-external=true

= DatagramPacket

* http://docs.oracle.com/javase///docs/api/java/net/D
atagramPacket.htm|

= MulticastSocket

* http://docs.oracle.com/javase///docs/api/java/net/M
ulticastSocket.html

Types of transport

= Unicast

* One-to-one association between a sender and
destination

- Each destination address uniquely identifies a
single receiver endpoint

FO/O%
O O

Unicast server side

DatagramSocket sender = new DatagramSocket (5000);
byte[] receiveData = new byte[1024];

byte[] sendData = new byte[1024];

String message = “get you";

while (true) {
DatagramPacket rp = new DatagramPacket (receiveData, receiveData.length);
sender.receive (rp);
String data = new String (rp.getData ());

InetAddress ip = rp.getAddress ();

int port = rp.getPort ();

sendData = message.getBytes();

DatagramPacket sp = new DatagramPacket (sendData, sendData.length, ip, port);
sender.send (sp);

Unicast client side

DatagramSocket receiver = new DatagramSocket ();
InetAddress ip = InetAddress.getByName ("localhost");

BufferedReader in = new BufferedReader (new InputStreamReader (System.in));
byte[] sendData = new byte[1024];

byte[] receiveData = new byte[1024];

sendData = in.readLine ().getBytes();

DatagramPacket sp = new DatagramPacket (sendData, sendData.length, ip, 5000);
receiver.send (sp);

DatagramPacket rp = new DatagramPacket (receiveData, receiveData.length);
String rData = new String (rp.getData ());

receiver.close ();

Types of transport

= Broadcast

* One-to-all association

* A single datagram from one sender is routed to all
of the possibly multiple endpoints associated with
the broadcast address

Types of transport

= Multicast

* One-to-many-of-many association

 Differs from broadcast in that the destination
address designates a subset not necessarily all, of
the accessible nodes

O

Socket with multithread

= Socket server of background thread

* Thread of socket server cannot do anything except for
waiting connection

* Therefore, it has to be implemented with multithread to
concurrently do its all jobs

= Deal with comm. channels for many clients

* Even when the multiple clients request to connect with
server simultaneously, it is also necessary to deal with
multithread

Background socket thread

= 3 components are necessary

- Background server class (ServerThread.java)
* Foreground main class (MainThread.java)
* Client class (same with previous TCP client)

ServerThread.java

public class ServerThread extends Thread {
private String name = null;
private static SimpleDateFormat sdfDate = new SimpleDateFormat ("yyy-MM-dd HH:mm:SSS");
private static String getLog (String msg) {
return "[" + sdfDate.format(new Date ()) + "] Server thread: " + msg;

}

public ServerThread () {
this.name = "ServerThread";

}

public void run () {
ServerSocket ss = null;
try {
ss = new ServerSocket(5000);
} catch (IOException e) {
// Auto-generated catch block
e.printStackTrace();
¥
while (true) {
Socket soc = null;
OutputStream out = null;
try {
soc = ss.accept();
System.out.println(ServerThread.getLog("new connection arrived"”));
out = soc.getOutputStream();
DataOutputStream dos = new DataOutputStream (out);

ServerThread.java

dos.writeUTF ("message from server");

dos.close ();
soc.close ();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} finally {
try {
soc.close();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

MainThread.java

public class MainThread {
private static SimpleDateFormat sdfDate = new SimpleDateFormat ("yyy-MM-dd HH:mm:SSS");
private static String getLog (String msg) {
return "[" + sdfDate.format(new Date ()) + "] Main thread: " + msg;
}

public static void main (String[] args) {

Thread t = new ServerThread ();
t.start ();
System.out.println(getLog ("server thread started"));
boolean flag = true;
while (flag) {

try {

Thread.sleep(1000);
} catch (InterruptedException e) {

// Auto-generated catch block
e.printStackTrace();

}

System.out.println(getLog ("server still alive"));

}
}
}

Multiple channels

= 3 components are necessary

« Channel management class (Server.java)
« Communication server class (CommThread.java)
* Client class (Clients.java)

Server.java

public class Server {
private static ArrayList<Thread> arr = new Arraylist<Thread> ();
private static SimpleDateFormat sdfDate = new SimpleDateFormat ("yyy-MM-dd HH:mm:SSS");

public static String getLog (String msg) {
return "[" + sdfDate.format(new Date ()) + "] Server thread: " + msg;
}

public static void main (String[] args) {
ServerSocket ss = null;

int id = 0;

try {
ss = new ServerSocket (5000);

} catch (IOException e) {
// Auto-generated catch block
e.printStackTrace();

}

System.out.println("server 1is ready");

Server.java

while (true) {

try {
Socket soc = ss.accept ();

System.out.println(Server.getLog ("new connection arrived"));
Thread t = new CommThread (soc, id ++);
t.start ();
arr.add(t);
Iterator<Thread> iter = arr.iterator ();
while (iter.hasNext ()) {
t = iter.next ();
if (!t.isAlive ()) {
iter.remove ();
}
}
} catch (IOException e) {
// Auto-generated catch block
e.printStackTrace();

CommThread.java

public class CommThread extends Thread {
private Socket soc;
private int id;
public CommThread (Socket soc, int id) {
this.soc = soc;
this.id = id;
}

public void run () {
try {
OutputStream os = soc.getOutputStream ();
DataOutputStream dos = new DataOutputStream (os);

dos.writeUTF ("message from server (" + id + ")");
System.out.println (Server.getlLog ("message is sent (" + id + ")"));

dos.close ();
this.soc.close ();
} catch (IOException e) {
// Auto-generated catch block
e.printStackTrace();

Clients.java

class Test extends Thread {
public void run () {
try {
Socket soc = new Socket("localhost", 5000);
DataInputStream dis = new DataInputStream (soc.getInputStream());

System.out.println(dis.readUTF());

dis.close();
soc.close();
} catch (IOException e) {
// Auto-generated catch block
e.printStackTrace();

}
}
}

public class Clients {
public static void main (String[] args) {
for (int i =0; i < 100; i ++) {
new Test ().start ();
}
}
}

Serialization

= The process of translating data structures
or object state into a format that can be
stored or transmitted and reconstructed
later

= Serialization in Java

* public interface serializable (in java.io.Serializable)

* Classes that do not implement this interface will not
have any of their state serialized or deserialized

Example of Serializable

public class Employee implements java.io.Serializable {
public String name;
public String address;
public transient int SSN;
public int number;

public void mailCheck() {
System.out.println("Mailing a check to

}

n n n

+ name + + address);

Example of serialization

public class SerializeDemo {

public static void main(String [] args) {
Employee e = new Employee();
e.name = "Reyan Ali";
e.address = "Phokka Kuan, Ambehta Peer";
e.SSN = 11122333;
e.number = 101;

try {
FileOutputStream fileOut = new FileOutputStream("/tmp/employee.ser");

ObjectOutputStream out = new ObjectOutputStream(fileOut);

out.writeObject(e);

out.close();

fileOut.close();

System.out.printf("Serialized data is saved in /tmp/employee.ser");
}catch(IOException i) {

i.printStackTrace();

}

Example of deserialization

public class DeserializeDemo {

public static void main(String [] args) {

Employee e = null;

try {

FileInputStream fileIn = new FileInputStream("/tmp/employee.ser");
ObjectInputStream in = new ObjectInputStream(fileIn);

e = (Employee) in.readObject();

in.close();

fileIn.close();

}catch(IOException i) {
i.printStackTrace();
return;

}catch(ClassNotFoundException c) {
System.out.println("Employee class not found");
c.printStackTrace();
return;

}

System.out.println("Deserialized Employee...");
System.out.println("Name: " + e.name);
System.out.println("Address: " + e.address);
System.out.println("SSN: " + e.SSN);
System.out.println("Number: " + e.number);

[Lab - Practice]

= Multiple channel + Serialization

= Make 4 classes (Server, CommThread, Client,
Student)

= Establish connection between two programs
in a single node with port number 5000

[Lab - Practice]

= Server

* If a client connects, it starts a new thread of CommThread
and adds that to arraylist.

* It prints each status (Start, Stop)
* If it have processed 10 clients, it will stop.

= CommThread

» Receive and print object information.
= Client

« Send and print object information.

= Student

* Object to be exchanged, and it has a num variable

Example of Output

Output:

Server Start
<input Name>: send0
<input Name>: send1

<input Name>: send9
Server Stop

Receive: student0
Receive: student

[Submit]

= Upload to i-Campus

« Compress your all java files to zip file
* File name: studentID lab9.zip

= Due date

 Today 23:59:59
« Class 42 (05/28 Monday)
* Penalty: -10% of each lab score per one day

