
Processes

Woo-Yeong Jeong (wooyeong@csl.skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http://csl.skku.edu

2SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Processes

 An instance of a program in execution.
• One of the most profound ideas in computer science.

• Not the same as “program” or “processor”.

 Process provides each program with two key
abstractions:
• Logical control flow

– Each program seems to have exclusive use of the CPU.

• Private address space
– Each program seems to have exclusive use of main memory.

 How are these illusions maintained?
• Process executions interleaved (multitasking).

• Address space managed by virtual memory system.

3SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Logical Control Flows

 Each process has its own logical control flow.

Process A Process B Process C

Time
quantum

of
time slice

4SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Concurrent Processes (1)

 Definition

• Two processes run concurrently (are concurrent) if
their flows overlap in time.

• Otherwise, they are sequential.

• Examples (running on single core):
– Concurrent: A & B, A & C

– Sequential: B & C

Process A Process B Process C

Time

5SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Concurrent Processes (2)

 User View of Concurrent Processes

• Control flows for concurrent processes are physically
disjoint in time

• However, we can think of concurrent processes are
running in parallel with each other

Process A Process B Process C

Time

6SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Context Switching

 Control flow passes from one process to
another via a context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

7SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Creating a New Process

 pid_t fork(void)

• Creates a new process (child process) that is identical
to the calling process (parent process)

• Returns 0 to the child process

• Returns child’s pid to the parent process

if (fork() == 0) {
printf ("hello from child \ n");

} else {
printf ("hello from parent \ n");

}

Fork is interesting
(and often confusing)
because it is called
once but returns twice

8SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Fork Example (1)

 Key points

• Parent and child both run same code.
– Distinguish parent from child by return value from fork()

• Start with same state, but each has private copy.
– Share file descriptors, since child inherits all open files.

void fork1() {
int x = 1;
pid_t pid = fork();
if (pid == 0) {

printf ("Child has x = %d \ n", ++x);
} else {

printf ("Parent has x = %d \ n", -- x);
}
printf ("Bye from process %d with x = %d \ n", getpid (), x);

}

9SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Fork Example (2)

 Key points

• Both parent and child can continue forking.

void fork2()
{

printf ("L0 \ n");
fork();
printf ("L1 \ n");
fork();
printf ("Bye \ n");

}
L0 L1

L1

Bye

Bye

Bye

Bye

10SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Destroying a Process

 void exit (int status)

• Exits a process.
– Normally returns with status 0

Åatexit() registers functions to be executed upon exit.

void cleanup(void) {
printf ("cleaning up \ n");

}

void fork6() {
atexit (cleanup);
fork();
exit(0);

}

11SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Zombies (1)

 Idea
• When a process terminates, still consumes system resources.

– Various tables maintained by OS

• Called a “zombie”
– Living corpse, half alive and half dead

 Reaping
• Performed by parent on terminated child.

• Parent is given exit status information.

• Kernel discards the terminated process.

 What if parent doesn’t reap?
• If any parent terminates without reaping a child, then child will

be reaped by init process.

• Only need explicit reaping for long-running processes.
– e.g. shells and servers

12SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Zombies (2)

linux > ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux > ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux > kill 6639
[1] Terminated
linux > ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

• ps shows child
processes as “defunct”

• Killing parent allows
child to be reaped

void fork7()
{

if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID = %d \ n",

getpid ());
exit(0);

} else {
printf ("Running Parent, PID = %d \ n",

getpid ());
while (1); /* Infinite loop */

}
}

13SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Synchronizing with Children

 pid_t wait (int *status)

• suspends current process until one of its children
terminates.

• return value is the pid of the child process that
terminated.

• if status != NULL , then the object it points to will be
set to a status indicating why the child process
terminated.

 pid_t waitpid (pid_t pid, int *status, int options)

• Can wait for specific process

• Various options

14SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Wait Example (1)

void fork9() {
int child_status ;

if (fork() == 0) {
printf ("HC: hello from child \ n");

}
else {

printf ("HP: hello from parent \ n");
wait(& child_status);
printf ("CT: child has terminated \ n");

}
printf ("Bye \ n");
exit();

}
HP

HC Bye

CT Bye

15SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Wait Example (2)
 If multiple children completed,

• will take in arbitrary order.

• Can use macros WIFEXITEDand WEXITSTATUSto get
information about exit status.

void fork10() {
pid_t pid [N];
int i , child_status ;
for (i = 0; i < N; i ++)

if ((pid [i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i ++) {
pid_t wpid = wait (&child_status) ;
if (WIFEXITED(child_status))

printf ("Child %d terminated with exit status %d \ n",
wpid , WEXITSTATUS(child_status));

else
printf ("Child %d terminate abnormally \ n", wpid);

}
}

16SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Waitpid Example

void fork 11()
{

pid_t pid [N] ;
int i ;
int child_status ;
for (i = 0; i < N; i ++)

if ((pid [i] = fork()) == 0)
exit(100+i) ; /* Child */

for (i = 0; i < N; i ++) {
pid_t wpid = waitpid (pid [i], &child_status , 0) ;
if (WIFEXITED(child_status))

printf ("Child %d terminated with exit status %d\ n",
wpid , WEXITSTATUS(child_status)) ;

else
printf ("Child %d terminated abnormally \ n", wpid) ;

}

17SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Running New Programs (1)

 int execl (char *path, char *arg0, é, NULL)

• loads and runs executable at path with arguments
arg0, arg1, …
ðpath is the complete path of an executable

ðarg0 becomes the name of the process

» Typically arg0 is either identical to path , or else it
contains only the executable filename from path.

– “real” arguments to the executable start with arg1, etc.

– list of args is terminated by a (char *) 0 argument.

• returns –1 if error, otherwise doesn’t return!

 int execv (char *path, char * argv[])

• argv : null terminated pointer arrays

18SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Running New Programs (2)

 Example: running /bin/ls

main() {
if (fork() == 0) {

execl ("/bin/ ls ", " ls ", "/", 0);
}
wait(NULL);
printf ("completed \ n");
exit();

}

main() {
char * args [] = {" ls ", "/", NULL};
if (fork() == 0) {

execv ("/bin/ ls ", args);
}
wait(NULL);

}

19SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Summary

 Process abstraction

• Logical control flow

• Private address space

 Process-related system calls
ƺfork()

ƺexit()

ƺwait(), waitpid ()

ƺexecl (), execle (), execv (), execveƽƾƗ ƛ

20SWE2007: Software Experiment 2 | Fall 2014 | Jin-Soo Kim (jinsookim@skku.edu)

Lab. Exercise

 Make the following program:

ƺmain

Ƶf ork()

Ƶif child

» exec()

» [$ ls Ƶal / sys/kernel/debug]

Ƶif parent

» wait()

» ÇÅÔ ÔÈÅ ÃÈÉÌÄƦÓ ÒÅÔÕÒÎ ÖÁÌÕÅ

» ÐÒÉÎÔ ÔÈÅ ÃÈÉÌÄƦÓ pid and the value

