Sockets

Prof. Jin-Soo Kim(jinsookim@skku.edu)

TA — Jinhong Kim(jinhong.kim@csl.skku.edu)
Computer Systems Laboratory

Sungkyunkwan University

http:// csl.skku.edu

sk

UNIVERSITY

Connections (1)

A Connection
A Clients and servers communicate by sending streams of bytes
over connections:
f Point-to-point, full -duplex, and reliable.
A A socket is an endpoint of a connection
f Socket address is an <IP address : port> pair
A A port is a 16-bit integer that identifies a process

f Ephemeral port: assigned automatically on client when client
makes a connection request

r Well-known port: associated with some service provided by
a server (e.g. port 80 is associated with web servers.)

A A connection is uniquely identified by the socket addresses of
Its endpoints (socket pair)

f <client IP:client port, server IP:serverport>

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

Client socket address Server socket address

128.2.194.2451213 208.216.181.180

. i/ Server

; . Connection socket pair _(port 80) / !

L T 1 (128.2.194.24%1213 208.216.181.1%0) + T—
Client host address Server host address
128.2.194.242 208.216.181.15

Note: 51213is an Note: S0is a weltkknown port
ephemeral port allocated associated with Web servers

by the kernel

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

-

S

= e
——

—— .

Client=se erver 'fu(, el

e et
P ———— —

A Most network appllcatlon IS based on the client -
server model:
A A server process and one or more client processes

f Clients and servers are processes running on hosts (can be
the same or different hosts)

A Server manages some resource
A Server provides service by manipulating resource for clients

1. Client sends request
Client \ "~~~ Server —
_ process/ . ..\ process Resource
4. Client 3. Server sends response 2. Server

handles handles
response request

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

S—
—r—

clients=

A Examples of client programs
A Web browsers, ftp, telnet, ssh

A How does a client find the server?

A The IP address in the server socket address identifies the host.

A The (well-known) port in the server socket address identifies the
service, and thus implicitly identifies the server process that
performs that service

A Examples of well-known ports (cf. /etc/services)
Port 21 ftp

Port 23: telnet

Port 25: mall

Port 80: web

SN TSY ™S,

f

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

Server host 128.2.194.242

Client host Service request for
1985 194 249:80

_ : (i.e., the Web server)

Kernel

Service request for
128.2.194.242:7

_ (i.e., the echo server)
: (_ Client)z

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

T —
——

Servens-

A Servers are long -running processes (daemons)

A Created at boot -time (typically) by the init process (process 1)
A Run continuously until the machine is turned off.

A Each server waits for requests to arrive on a well -
known port associated with a particular service
A Port 21: ftp server
A Port 23: telnet server
A Port 25: mail server
A Port 80: HTTP server

A A machine that runs a server process is also often
referred to as a “server’”

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

Sockets(1)"

A Sockets interface
A Introduced in BSD4.1 UNIX, 1981.
A Provides a user-level interface to the network.
A Explicitly created, used, released by applications.
A Based on client/server paradigm
A Two types of transport service
f Unreliable datagram
f Reliable, connection-oriented byte stream
A Underlying basis for all Internet applications

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

T —
——

Sockets(2)-

g —

A What is a socket?

A A host-local, application -created/owned, OS -controlled interface
to network (a rdoorR)

f To the kernel, a socket is an endpoint of communication.
f To an application, a socket is a file descriptor.

O Applications read/write from/to the network using the file
descriptor.

O Remember: All Unix I/0 devices, including networks, are
modeled as files.

A Clients and servers communicate with each by reading from and
writing to socket descriptors.

f The main distinction between regular file I/O and socket I/O is
how the application ropensR th

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

A Hardware/Software organization of an Internet

application
Internet client host Internet server host
/| Client |iUser code | Server |
Sockets interface | TE T i —
(system calls) | v ; i v |
|| TCPIP |iKemel code | TCPP |
Hardware interface | ———% """ A
(interrupts) i v | i v |
/| Network |i Hardware .| Network |:
'| adapter |i and firmware .| adapter |:

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

Connectionoriented service Connectionless service

Server Server
socket() | socket() |
' |
el I Client bind() I
. ! |
Client |iStenO I SOCket() I recvfrom()l
socket() | | 1
accept() | bind() |
connect()lc—mlml_, |
establis sendto() I ________ request
i |- Lre200 | oD | -5 »
request T recvfrom()|
read() | i sendto() |
L write() I response ‘
response |

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

———

Socket Address Structure

A Generic socket address
A For address arguments to connect(), bind(), and accept()

struct sockaddr ({
unsigned short sa_family ; /* protocol family */
char sa_data [14]; /* address data. */

%

A Internet -specific socket address

A Must cast (sockaddr_in *) to (sockaddr *) for connect(), bind(),
and accept()

struct sockaddr_in {
unsigned short sin_family; /* address family (always AF_INET) */
unsigned short sin_port; /* port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

w

A int socket (int family, int type, int protocol)
A socket() creates a socket descriptor.
A family specifies the protocol family.
d AF_UNIX Local Unix domain protocols
0 AF_INET: IPv4 Internet protocols
A type specifies the communication semantics.

0 SOCK_STREAMbrovides sequenced, reliable, two -way,
connection -based byte streams

0 SOCK_DGRAMsupports datagrams (connectionless,
unreliable messages of a fixed maximum length)

0 SOCK_RAWoprovides raw network protocol access

A protocol specifies a particular protocol to be used with the
socket.

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

S—
—r—

connect(y

B ———i
g ——

A int connect (int sockfd, const struct sockaddr
*servaddr, socklen_t addrlen)
A Used by a TCP client to establish a connection with a TCP server.
A servaddr contains <IP address, port number> of the server.
A The client does not have to call bind() before calling connect().

f The kernel will choose both an ephemeral port and the source
IP address if necessary.

A Client process suspends (blocks) until the connection is created.

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

R
—

Echo Client! (1)

#include <sys/ types.h >
#include <sys/ socket.h >
#include < netdb.h >
#include < stdio.h >
#include < stdlib.h >
#include < strings.h >

#define MAXLINE 80

int main (int argc, char* argvl(]){
int n, cfd;
struct hostent *h;
struct sockaddr_in saddr;
char buf [MAXLINE];
char *host = argv [1];
int port= atoi (argv [2]);

if ((cfd =socket(AF_INET, SOCK_STREAM, 0)) <0) {
printf ("socket() failed. \n");
exit(1);

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

Echo Client (2)

if ((h = gethostbyname (host)) == NULL) {
printf ("invalid hostname %s \ n", host);
exit(2);
}
bzero ((char *)& saddr, sizeof (saddr));
saddr.sin_family = AF_INET;
bcopy((char *)h ->h_addr, (char *)& saddr.sin_addr.s _addr , h ->h_length);
saddr.sin_port = htons (port);

if (connect(cfd ,(struct sockaddr *)& saddr,sizeof (saddr))<0){

printf ("connect() failed. \ n");
exit(3);
}
while ((n = read(0, buf , MAXLINE)) > 0) {

write(cfd , buf, n);
n=read(cfd, buf, MAXLINE);
write(1, buf, n);

}

close(cfd);

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

PDING()0

A int bind (int sockfd, struct sockaddr *myaddr,
socklen_t addrlen)
A bind() gives the socket sockfd the local address myaddr .
A myaddr is addrlen bytes long.
A Servers bind their well -known port when they start.

A Normally, a TCP client let the kernel choose an ephemeral port
and a client IP address.

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

A int listen (int sockfd, int backlog)

A listen() converts an unconnected socket into a passive socket,
Indicating that the kernel should accept incoming connection
requests.

f When a socket is created, it is assumed to be an active
socket, that is, a client socket that will issue a connect().

A backlog specifies the maximum number of connections that the
kernel should queue for this socket.

A Historically, a backlog of 5 was used, as that was the maximum
value supported by 4.2BSD.

f Busy HTTP servers must specify a much larger backlog, and
newer kernels must support larger values.

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

socklen_t *addrlen)

A accept() blocks waiting for a connection request.

A accept() returns a connected descriptor with the same
properties as the listening descriptor .

f The kernel creates one connected socket for each client
connection that is accepted.

Returns when the connection between client and server is
created and ready for I/O transfers.

r All I/O with the client will be done via the connected socket.

A The cliaddr and addrlen arguments are used to return the
address of the connected peer process (the client)

-\

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

listenfd(3)
) O
Client L Server
clientfd
Connection listenfd(3)
request o
__________________ .
Client L Server
clientfd
listenfd(3)

O
Client L J Server

clientfd connfd(4)

1. Server blocks iaccept ,
waiting for connection request on
listening descriptotistenfd

2. Client makes connection request
by calling and blocking in
connect .

3. Server returnsonnfd from
accept . Client returns from
connect . Connection is now
established betweertlientfd and
connfd .

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

A Listening descriptor
A End point for client connection requests
A Created once and exists for lifetime of the server

A Connected descriptor

A End point of the connection between client and server

A A new descriptor is created each time the server accepts a
connection request from a client.

A Exists only as long as it takes to service client.
A Why the distinction?

A Allows for concurrent servers that can communicate over many
client connections simultaneously.

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

Echo Server (1)

#include <sys/ types.h >
#include <sys/ socket.h >
#include < netdb.h >
#include < stdio.h >
#include < stdlib.h >
#include < strings.h >
#include < arpa/ineth >

#define MAXLINE 80

int main (int argc, char* argvl(]){
int n, listenfd , connfd, caddrlen ;
struct hostent *h;
struct sockaddr in saddr, caddr;
char buf [MAXLINE];
int port= atoi (argv [1]);

if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) <0) {
printf ("socket() failed. \ n");
exit(1);

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

Echo Server (2)

bzero ((char *)& saddr, sizeof (saddr));
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = htonl (INADDR_ANY);
saddr.sin_port = htons (port);
if (bind(listenfd , (struct sockaddr *)& saddr,
sizeof (saddr))<0){
printf ("bind() failed. \ n");
exit(2);
}
if (listen(listenfd ,5)<0){
printf ("listen() failed. \n");
exit(3);
}
while (1) {
caddrlen = sizeof (caddr);
if ((connfd = accept(listenfd ,(struct sockaddr *)& caddr,
&caddrlen)) <0){
printf ("accept() failed. \ n");
continue;

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

il

EchoiServer (3)

h = gethostbyaddr ((const char*)& caddr.sin_addr.s_addr
sizeof (caddr.sin_addr.s_addr), AF_INET);

printf ("server connected to %s (%S) \n",
h->h _name
inet_ntoa (*(struct in_addr *)& caddr.sin_addr));

/Il echo

while ((n = read(connfd , buf, MAXLINE)) > 0) {
printf ("got %d bytes from client. \ n", n);
write(connfd , buf, n);

}

printf ("connection terminated. \n");

close(connfd);

SWE2007: SoftwarExperiment 24 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

A

Client Server
socket socket
bind
i listen
Connection
v request v
connect « ~------------- > accept
v v
write > read
v v
read <« write
v EOF v
close @ ~------------- > read

Await connection
request from
next client

SWE2007: SoftwarExperiment 2 Fall 2017| Jin -Soo Kim (jinsookim@skku.edu)

