
Sockets

Prof. Jin-Soo Kim(jinsookim@skku.edu)

TA –Jinhong Kim(jinhong.kim@csl.skku.edu)

Computer Systems Laboratory

Sungkyunkwan University

http:// csl.skku.edu

2SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Internet Connections (1)

ÁConnection
ÅClients and servers communicate by sending streams of bytes

over connections:

ŕPoint-to-point, full -duplex, and reliable.

ÅA socket is an endpoint of a connection

ŕSocket address is an <IP address : port> pair

ÅA port is a 16-bit integer that identifies a process

ŕEphemeral port : assigned automatically on client when client
makes a connection request

ŕWell-known port : associated with some service provided by
a server (e.g. port 80 is associated with web servers.)

ÅA connection is uniquely identified by the socket addresses of
its endpoints (socket pair)

ŕ<client IP:client port, server IP:serverport>

3SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Internet Connections (2)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

Note: 51213is an
ephemeral port allocated
by the kernel

Note: 80 is a well-known port
associated with Web servers

4SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Client -Server Model

ÁMost network application is based on the client -
server model:
ÅA server process and one or more client processes

ŕClients and servers are processes running on hosts (can be
the same or different hosts)

ÅServer manages some resource

ÅServer provides service by manipulating resource for clients

Client
process

Server
process

1. Client sends request

2. Server
handles
request

3. Server sends response4. Client
handles
response

Resource

5SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Clients

ÁExamples of client programs
ÅWeb browsers, ftp, telnet, ssh

ÁHow does a client find the server?
ÅThe IP address in the server socket address identifies the host.

ÅThe (well-known) port in the server socket address identifies the
service, and thus implicitly identifies the server process that
performs that service

ÅExamples of well-known ports (cf. /etc/services)

ŕPort 21: ftp

ŕPort 23: telnet

ŕPort 25: mail

ŕPort 80: web

6SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Using Ports

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80
(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7
(i.e., the echo server)

Kernel

Kernel

Client

Client

7SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Servers

ÁServers are long -running processes (daemons)
ÅCreated at boot -time (typically) by the init process (process 1)

ÅRun continuously until the machine is turned off.

ÁEach server waits for requests to arrive on a well -
known port associated with a particular service
ÅPort 21: ftp server

ÅPort 23: telnet server

ÅPort 25: mail server

ÅPort 80: HTTP server

ÁA machine that runs a server process is also often
referred to as a “server”

8SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Sockets (1)

ÁSockets interface
ÅIntroduced in BSD4.1 UNIX, 1981.

ÅProvides a user-level interface to the network.

ÅExplicitly created, used, released by applications.

ÅBased on client/server paradigm

ÅTwo types of transport service

ŕUnreliable datagram

ŕReliable, connection-oriented byte stream

ÅUnderlying basis for all Internet applications

9SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Sockets (2)

ÁWhat is a socket?
ÅA host -local, application -created/owned, OS -controlled interface
to network (a ŗdoorŘ)

ŕTo the kernel, a socket is an endpoint of communication.

ŕTo an application, a socket is a file descriptor.

ŎApplications read/write from/to the network using the file
descriptor.

ŎRemember: All Unix I/O devices, including networks, are
modeled as files.

ÅClients and servers communicate with each by reading from and
writing to socket descriptors.

ŕThe main distinction between regular file I/O and socket I/O is
how the application ŗopensŘ the socket descriptors.

10SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Sockets (3)

ÁHardware/Software organization of an Internet
application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware

11SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Sockets (4)

socket()

bind()

listen()

accept()
socket()

connect()

write()
read()

write()

read()

Server

Client

request

response

socket()

bind()

recvfrom()

Server

socket()

bind()

sendto()

Client

sendto()

recvfrom()

Connection-oriented service Connectionless service

request

response

connection
established

12SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Socket Address Structure

ÁGeneric socket address
ÅFor address arguments to connect(), bind(), and accept()

ÁInternet -specific socket address
ÅMust cast (sockaddr_in *) to (sockaddr *) for connect(), bind(),

and accept()

struct sockaddr {
unsigned short sa_family ; /* protocol family */
char sa_data [14]; /* address data. */

};

struct sockaddr_in {
unsigned short sin_family; /* address family (always AF_INET) */
unsigned short sin_port; /* port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */

};

13SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

socket()

Áint socket (int family, int type, int protocol)

Åsocket() creates a socket descriptor.

Å family specifies the protocol family.

ðAF_UNIX: Local Unix domain protocols

ðAF_INET: IPv4 Internet protocols

Å type specifies the communication semantics.

ðSOCK_STREAM: provides sequenced, reliable, two -way,
connection -based byte streams

ðSOCK_DGRAM: supports datagrams (connectionless,
unreliable messages of a fixed maximum length)

ðSOCK_RAW: provides raw network protocol access

Åprotocol specifies a particular protocol to be used with the
socket.

14SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

connect()

Áint connect (int sockfd, const struct sockaddr

*servaddr, socklen_t addrlen)

ÅUsed by a TCP client to establish a connection with a TCP server.

Åservaddr contains <IP address, port number> of the server.

ÅThe client does not have to call bind() before calling connect().

ŕThe kernel will choose both an ephemeral port and the source
IP address if necessary.

ÅClient process suspends (blocks) until the connection is created.

15SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Echo Client (1)
#include <sys/ types.h >
#include <sys/ socket.h >
#include < netdb.h >
#include < stdio.h >
#include < stdlib.h >
#include < strings.h >

#define MAXLINE 80

int main (int argc , char * argv []) {
int n, cfd ;
struct hostent *h;
struct sockaddr_in saddr ;
char buf [MAXLINE];
char *host = argv [1];
int port = atoi (argv [2]);

if ((cfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf ("socket() failed. \ n");
exit(1);

}

16SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Echo Client (2)

if ((h = gethostbyname (host)) == NULL) {
printf ("invalid hostname %s \ n", host);
exit(2);

}
bzero ((char *)& saddr , sizeof (saddr));
saddr.sin_family = AF_INET;
bcopy((char *)h - >h_addr , (char *)& saddr.sin_addr.s_addr , h - >h_length);
saddr.sin_port = htons (port);

if (connect(cfd ,(struct sockaddr *)& saddr,sizeof (saddr)) < 0) {
printf ("connect() failed. \ n");
exit(3);

}
while ((n = read(0, buf , MAXLINE)) > 0) {

write(cfd , buf , n);
n = read(cfd , buf , MAXLINE);
write(1, buf , n);

}
close(cfd);

}

17SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

bind()

Áint bind (int sockfd , struct sockaddr *myaddr ,

socklen_t addrlen)

Åbind() gives the socket sockfd the local address myaddr .

Åmyaddr is addrlen bytes long.

ÅServers bind their well -known port when they start.

ÅNormally , a TCP client let the kernel choose an ephemeral port
and a client IP address.

18SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

listen()

Áint listen (int sockfd, int backlog)

Å listen() converts an unconnected socket into a passive socket,
indicating that the kernel should accept incoming connection
requests.

ŕWhen a socket is created, it is assumed to be an active
socket, that is, a client socket that will issue a connect().

Åbacklog specifies the maximum number of connections that the
kernel should queue for this socket.

ÅHistorically, a backlog of 5 was used, as that was the maximum
value supported by 4.2BSD.

ŕBusy HTTP servers must specify a much larger backlog, and
newer kernels must support larger values.

19SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

accept() (1)

Áint accept (int sockfd, struct sockaddr *cliaddr,

socklen_t *addrlen)

Åaccept() blocks waiting for a connection request.

Åaccept() returns a connected descriptor with the same
properties as the listening descriptor .

ŕThe kernel creates one connected socket for each client
connection that is accepted.

ŕReturns when the connection between client and server is
created and ready for I/O transfers.

ŕAll I/O with the client will be done via the connected socket.

ÅThe cliaddr and addrlen arguments are used to return the
address of the connected peer process (the client)

20SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

accept() (2)

listenfd(3)

Client

1. Server blocks in accept ,
waiting for connection request on
listening descriptor listenfd .

clientfd

Server

listenfd(3)

Client

clientfd

Server

2. Client makes connection request
by calling and blocking in
connect .

Connection
request

listenfd(3)

Client

clientfd

Server

3. Server returns connfd from
accept . Client returns from
connect . Connection is now
established between clientfd and
connfd .connfd(4)

21SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

accept() (3)

ÁListening descriptor
ÅEnd point for client connection requests

ÅCreated once and exists for lifetime of the server

ÁConnected descriptor
ÅEnd point of the connection between client and server

ÅA new descriptor is created each time the server accepts a
connection request from a client.

ÅExists only as long as it takes to service client.

ÁWhy the distinction?
ÅAllows for concurrent servers that can communicate over many

client connections simultaneously.

22SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Echo Server (1)
#include <sys/ types.h >
#include <sys/ socket.h >
#include < netdb.h >
#include < stdio.h >
#include < stdlib.h >
#include < strings.h >
#include < arpa / inet.h >

#define MAXLINE 80

int main (int argc , char * argv []) {
int n, listenfd , connfd , caddrlen ;
struct hostent *h;
struct sockaddr_in saddr , caddr ;
char buf [MAXLINE];
int port = atoi (argv [1]);

if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf ("socket() failed. \ n");
exit(1);

}

23SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Echo Server (2)

bzero ((char *)& saddr , sizeof (saddr));
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = htonl (INADDR_ANY);
saddr.sin_port = htons (port);
if (bind(listenfd , (struct sockaddr *)& saddr ,

sizeof (saddr)) < 0) {
printf ("bind() failed. \ n");
exit(2);

}
if (listen(listenfd , 5) < 0) {

printf ("listen() failed. \ n");
exit(3);

}
while (1) {

caddrlen = sizeof (caddr);
if ((connfd = accept(listenfd , (struct sockaddr *)& caddr ,

&caddrlen)) < 0) {
printf ("accept() failed. \ n");
continue;

}

24SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Echo Server (3)

h = gethostbyaddr ((const char *)& caddr.sin_addr.s_addr ,
sizeof (caddr.sin_addr.s_addr), AF_INET);

printf ("server connected to %s (%s) \ n",
h- >h_name,
inet_ntoa (*(struct in_addr *)& caddr.sin_addr));

// echo
while ((n = read(connfd , buf , MAXLINE)) > 0) {

printf ("got %d bytes from client. \ n", n);
write(connfd , buf , n);

}

printf ("connection terminated. \ n");
close(connfd);

}
}

25SWE2007: Software Experiment 2 | Fall 2017 | Jin -Soo Kim (jinsookim@skku.edu)

Echo Server (4)
Client Server

socket socket

bind

listen

accept

read

read

write

close

read

connect

write

close

Connection
request

EOF

Await connection
request from
next client

