Introduction

- **Schedule**
 - 13:30 – 14:45 (Mon & Wed)
 - Lecture room: 산학협력센터 #85529

- **Course homepage**
 - http://csl.skku.edu/SWE3004S13/
About Me

- Jin-Soo Kim
 - Professor @ CE & SSE & SW Dept.
 - Computer Systems Laboratory
 - Office: 산학협력센터 #85566 (5th floor)
 - Email: jinsookim@skku.edu
 - URL: http://csl.skku.edu/jinsoo
 - Tel: 031-299-4593
 - Office hours: Monday & Wednesday
 - The best way to contact me is by email.
Where Are We?

<table>
<thead>
<tr>
<th>1학년</th>
<th>2학년</th>
<th>3학년</th>
<th>4학년</th>
<th>5학년</th>
</tr>
</thead>
<tbody>
<tr>
<td>1학기</td>
<td>2학기</td>
<td>1학기</td>
<td>2학기</td>
<td>1학기</td>
</tr>
<tr>
<td>성균관대학교 셰미나 1/1</td>
<td>정보통신공학 개론(1)</td>
<td>프로그래밍원리</td>
<td>운영체제</td>
<td>해드라이언 SW (DB/DB/ API) 트랙</td>
</tr>
<tr>
<td>프로그래밍기초와 실습 (3/4)</td>
<td>프로그래밍기본 (3/3)</td>
<td>데이터베이스 기론 (3/3)</td>
<td>정보보호기론 (3/3)</td>
<td>인공지능 (3/3)</td>
</tr>
<tr>
<td>컴퓨터공학전기론 (2/2)</td>
<td>컴퓨터구조 (3/3)</td>
<td>컴퓨터구조 (3/3)</td>
<td>컴퓨터네트워크 (3/3)</td>
<td>컴퓨터네트워크 (3/3)</td>
</tr>
<tr>
<td>논리학습 (3/3)</td>
<td>시스템프로그램 (3/3)</td>
<td>로그작업 (3/3)</td>
<td>설계/설계 (3/3)</td>
<td>설계/설계 (3/3)</td>
</tr>
<tr>
<td>오프라마 (2/3)</td>
<td>프로그래밍언어 (3/3)</td>
<td>하드웨어기술 (3/3)</td>
<td>컴퓨터네트워크 (3/3)</td>
<td>컴퓨터네트워크 (3/3)</td>
</tr>
<tr>
<td>유닉스 프로그래밍 (3/3)</td>
<td>소프트웨어공학 (3/3)</td>
<td>소프트웨어공학 (3/3)</td>
<td>소프트웨어공학 (3/3)</td>
<td>소프트웨어공학 (3/3)</td>
</tr>
<tr>
<td>컴퓨터공학전기론 (4/4)</td>
<td>컴퓨터공학전기론 (3/3)</td>
<td>컴퓨터공학전기론 (3/3)</td>
<td>컴퓨터공학전기론 (3/3)</td>
<td>컴퓨터공학전기론 (3/3)</td>
</tr>
<tr>
<td>소프트웨어설계: JAVa (3/4)</td>
<td>소프트웨어설계: C/C++ (2/4)</td>
<td>소프트웨어설계: Mobile (2/4)</td>
<td>소프트웨어설계: Internet (2/4)</td>
<td>소프트웨어설계: Network (3/3)</td>
</tr>
<tr>
<td>데이터형성과 설계(2/4)</td>
<td>컴퓨터공학전기론 (3/3)</td>
<td>컴퓨터공학전기론 (3/3)</td>
<td>컴퓨터공학전기론 (3/3)</td>
<td>컴퓨터공학전기론 (3/3)</td>
</tr>
</tbody>
</table>

* SWE3004: Operating Systems | Spring 2013 | Jin-Soo Kim (jinsookim@skku.edu)
What is OS?

- Computer systems internals

Software

System calls

Operating Systems

Application

Architecture

Hardware

CPU

Mem

I/O Devices
Why do we learn OS?

- To graduate?

- To make a better OS or system.
 - Functionality
 - Performance/Cost
 - Reliability
 - Energy efficiency

- To make a new hardware up and running.
- To design OS-aware hardware.
- To understand computer systems better.
- Just for fun!
Prerequisites

- C programming skills
- Basic knowledge of UNIX/Linux systems
- GE4B029 (Basis and Practice in Programming)
- SWE2001 (System Program)
- ICE3003 (Computer Architecture)
Operating System Concepts

References (1)

- For General Operating System Concepts:
 - Modern Operating Systems
 (Second Edition)
References (2)

- For Linux:
 - Understanding the Linux Kernel
 (Third Edition)
 D. Bovet and M. Cesati,
References (3)

- For Windows:
 - Windows Internals (Sixth Edition)
 Mark E. Russinovich, David A. Solomon, and Alex Ionescu,
References (4)

- For Solaris:
 - Solaris Internals
 Richard McDougall and Jim Mauro,
References (5)

- For Introduction to Computer Systems:
 - Computer Systems: A Programmer’s Perspective
Course Plan

- Lectures
 - General operating system concepts
 - Case studies
 - Linux
 - Microsoft Windows
 - Solaris

- Hands-on projects
 - Using Pintos instructional OS
Lectures: Topics

- Operating system structure overview
- Processes and threads
- CPU scheduling
- Synchronization
- Deadlocks
- Memory management
- Virtual memory
- I/O systems
- Storage
- File systems
Projects

- Lab session
 - A separate class with a TA
 - Once a week (mandatory)
 - Project announcement
 - Q&A
 - Hints & helps
 - Oral tests
 - ...

Project Schedule

- Project 0 (Warming-up) 2 weeks, ~3/15
- Project 1 (Threads) 2 weeks, ~3/29
- Project 1 Oral test 1 week, ~4/5
- Project 2 (User programs) 3 weeks, ~5/3
- Project 2 Oral test 1 week, ~5/10
- Project 3 (Virtual memory) 4 weeks, ~6/7
- Project 3 Oral test 1 week, ~6/14

- This schedule is subject to change
- These are individual projects
Class Policies (1)

- **Grading Policy (subject to change)**
 - Class attendance: 10%
 - Exams: 35%
 - Midterm: 15%
 - Final: 20%
 - Projects: 55%
 - Project 0: 5%
 - Project 1: 10%
 - Project 2: 15%
 - Project 3: 25%
Class Policies (2)

- Class Attendance Policy
 - If you miss one or both of exams, you will fail this course.
 - Do not be late! You should be present in the lecture room when I take class attendance.
 - You can miss the class up to “four” times without any penalty.
 - Including lab sessions
 - For unexcused absences and for excused absences as well
 - There will be a (small) bonus for students who attend all the classes and lab sessions.
Class Policies (3)

- **Cheating Policy**
 - What is cheating?
 - Copying another student’s solution (or one from the Internet) and submitting it as your own
 - Allowing another student to copy your solution
 - What is NOT cheating?
 - Helping others use systems or tools
 - Helping others with high-level design issues
 - Helping others debug their code
 - Penalty for cheating:
 - Severe penalty on the grade and report to dept. chair
 - Ask helps to your TA if you experience any difficulty
Questions?