NAND Flash-based Storage

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Today’s Topics

- NAND flash memory
- Flash Translation Layer (FTL)
- OS implications
Flash Memory Characteristics

- **Flash memory**
 - Non-volatile, Updateable, High-density
 - Low cost, Low power consumption, High reliability

- **Erase-before-write**
 - Read
 - Write or Program: 1 \rightarrow 0
 - Erase: 0 \rightarrow 1

- **Read faster than write/erase**

- **Bulk erase**
 - Erase unit: block
 - Program unit: byte or word (NOR), page (NAND)
NOR Flash

- NOR flash
 - Random, direct access interface
 - Fast random reads
 - Slow erase and write
 - Mainly for code storage
 - Intel, Spansion, STMicro, ...
NAND Flash

- NAND flash
 - I/O mapped access
 - Smaller cell size
 - Lower cost
 - Smaller size erase blocks
 - Better performance for erase and write
 - Mainly for data storage

- Samsung, Toshiba, Hynix, ...
NAND Flash Architecture

- 2Gb NAND flash device organization

Source: Micron Technology, Inc.
NAND Flash Types (1)

- **SLC NAND Flash**
 - Small block (≤ 1Gb)
 - Large block (≥ 1Gb)

- **MLC NAND Flash**

- **TLC NAND Flash**

Source: Micron Technology, Inc.
NAND Flash Types (2)

<table>
<thead>
<tr>
<th></th>
<th>SLC NAND(^1) (small block)</th>
<th>SLC NAND(^2) (large block)</th>
<th>MLC NAND(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page size (Bytes)</td>
<td>512+16</td>
<td>2,048+64</td>
<td>4,096+128</td>
</tr>
<tr>
<td>Pages / Block</td>
<td>32</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Block size</td>
<td>16KB</td>
<td>128KB</td>
<td>512KB</td>
</tr>
<tr>
<td>(t_R) (read)</td>
<td>15 µs (max)</td>
<td>20 µs (max)</td>
<td>50 µs (max)</td>
</tr>
<tr>
<td>(t_{\text{PROG}}) (program)</td>
<td>200 µs (typ) 500 µs (max)</td>
<td>200 µs (typ) 700 µs (max)</td>
<td>600 µs (typ) 1,200 µs (max)</td>
</tr>
<tr>
<td>(t_{\text{BERS}}) (erase)</td>
<td>2 ms (typ) 3 ms (max)</td>
<td>1.5 ms (typ) 2 ms (max)</td>
<td>3 ms (typ)</td>
</tr>
<tr>
<td>NOP</td>
<td>1 (main), 2 (spare)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Endurance Cycles</td>
<td>100K</td>
<td>100K</td>
<td>10K</td>
</tr>
<tr>
<td>ECC (per 512Bytes)</td>
<td>1 bit ECC 2 bits EDC</td>
<td>1 bit ECC 2 bits EDC</td>
<td>4 bits ECC 5 bits EDC</td>
</tr>
</tbody>
</table>

\(^1\) Samsung K9F1208X0C (512Mb) \(^2\) Samsung K9K8G08U0A (8Gb) \(^3\) Micron Technology Inc.
NAND Applications

- Universal Flash Drives (UFDs)
- Flash cards
 - CompactFlash, MMC, SD, Memory stick, ...
- Embedded devices
 - Cell phones, MP3 players, PMPs, PDAs, Digital TVs, Set-top boxes, Car navigators, ...
- Hybrid HDDs
- Intel Turbo Memory
- SSDs (Solid-State Disks)
SSDs (1)

- HDDs vs. SSDs

2.5” HDD Flash SSD
(101x70x9.3mm)

1.8” HDD Flash SSD
(78.5x54x4.15mm)
SSDs (2)

<table>
<thead>
<tr>
<th>Feature</th>
<th>SSD (Samsung)</th>
<th>HDD (Seagate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>MMDOE56G5MXP (PM800)</td>
<td>ST9500420AS (Momentus 7200.4)</td>
</tr>
<tr>
<td>Capacity</td>
<td>256GB (16Gb MLC x 128, 8 channels)</td>
<td>500GB (2 Discs, 4 Heads, 7200RPM)</td>
</tr>
<tr>
<td>Form factor</td>
<td>2.5” Weight: 84g</td>
<td>2.5” Weight: 110g</td>
</tr>
<tr>
<td>Host interface</td>
<td>Serial ATA-2 (3.0 Gbps)</td>
<td>Serial ATA-2 (3.0 Gbps)</td>
</tr>
<tr>
<td></td>
<td>Host transfer rate: 300MB</td>
<td>Host transfer rate: 300MB</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Active: 0.26W</td>
<td>Active: 2.1W (Read), 2.2W (Write)</td>
</tr>
<tr>
<td></td>
<td>Idle/Standby/Sleep: 0.15W</td>
<td>Idle: 0.69W, Standby/Sleep: 0.2W</td>
</tr>
<tr>
<td>Performance</td>
<td>Sequential read: Up to 220 MB/s</td>
<td>Power-on to ready: 4.5 sec</td>
</tr>
<tr>
<td></td>
<td>Sequential write: Up to 185 MB/s</td>
<td>Average latency: 4.17 msec</td>
</tr>
<tr>
<td></td>
<td>Average latency: 4.17 msec</td>
<td></td>
</tr>
<tr>
<td>Measured performance¹</td>
<td>Sequential read: 176.73 MB/s</td>
<td>Sequential read: 86.07 MB/s</td>
</tr>
<tr>
<td></td>
<td>Sequential write: 159.98 MB/s</td>
<td>Sequential write: 84.64 MB/s</td>
</tr>
<tr>
<td></td>
<td>Random read: 10.56 MB/s</td>
<td>Random read: 0.61 MB/s</td>
</tr>
<tr>
<td></td>
<td>Random write: 2.93 MB/s</td>
<td>Random write: 1.28 MB/s</td>
</tr>
<tr>
<td>Price²</td>
<td>583,770 won</td>
<td>88,800 won</td>
</tr>
</tbody>
</table>

² Source: http://www.danawa.com (As of Nov. 21, 2010)
NAND Constraints (1)

- **No in-place update**
 - Require sector remapping (or address translation)

- **Bit errors**
 - Require the use of error correction codes (ECC)

- **Bad blocks**
 - Factory-marked & run-time bad blocks
 - Require bad block remapping

- **Limited program/erase cycles**
 - < 100K for SLCs
 - < 5K for MLCs
 - Require wear-leveling
NAND Constraints (2)

- **Limited NOP (Number of Programming)**
 - 1 / sector for most SLCs (4 for 2KB page)
 - 1 / page for most MLCs

- **Sequential page programming**
 - For large block SLCs and MLCs

- **Pair-page programming in MLCs**
 - Two pages inside a block are linked together
 - Performance difference
 - Interference
What is FTL?

- A software layer to make NAND flash fully emulate traditional block devices (e.g., disks).

Diagram:

- File System
 - Read Sectors
 - Write Sectors

- Device Driver
 - Read
 - Write
 - Erase

- Flash Memory

Diagram:

- File System
 - Read Sectors
 - Write Sectors

- Device Driver
 - Read Sectors
 - Write Sectors

- FTL

- Flash Memory

Source: Zeen Info. Tech.
FTL (2)

- Flash cards internals

![Flash cards image](image-url)
FTL (3)

- SSD internals

Source: Indilinx
FTL (4)

Flash Cards, SSDs

- Applications
- Operating System
- File Systems
- Block Device Driver
- Flash Translation Layer
- NAND Controller
- NAND Flash Memory

Embedded Flash Storage

- Applications
- Operating System
- File Systems
- Block Device Driver
- Flash Translation Layer
- NAND Controller
- NAND Flash Memory
FTL (5)

- For performance
 - Address translation
 - Garbage collection
 - Hot/cold data identification/separation
 - Interleaving over multiple channels & flash chips
 - Request scheduling
 - Buffer management
 - ...

FTL (6)

- For reliability
 - Bad block management
 - Wear-leveling
 - Power-off recovery
 - Error correction code (ECC)
 - ...

- Other features
 - Encryption
 - Compression
 - Deduplication
 - ...
Sector Mapping (1)

General page mapping

- Most flexible
- Efficient handling of small writes
- Large memory footprint
 - One mapping entry per page: 32MB for 32GB MLC (4KB page)
 - Bitmap for page validity
 - Per-block invalid page counter
- Sensitive to the amount of reserved blocks
- Performance affected as the system ages

\[W = <1, 2, 8, 1, 2, 12, 13, 9> \]
Sector Mapping (2)

- Naïve block mapping
 - Each table entry maps one block
 - Small RAM usage
 - Inefficient handling of small writes

W = <4, 5, 6, 7, 1>
Sector Mapping (3)

- **Log block scheme** [IEEE TOCE 2002]
 - A small number of log blocks
 - 1+ log block(s) per data block
 - Page mapping for log blocks
 - Full/partial/switch merge
 - Switch merge for sequential updates
 - Low log block utilization

\[W = \langle 1, 2, 8, 1, 2, 12, 13, 9 \rangle \]
Sector Mapping (4)

- **FAST** [ACM TECS 2007]
 - Log blocks shared by all data blocks
 - Sequential/random log blocks
 - Improved log block utilization
 - Increased merge time

\[W = \langle 1, 2, 8, 1, 2, 12, 13, 9 \rangle \]
Sector Mapping (5)

- **Superblock FTL** [ACM EMSOFT 2006]
 - Superblock = logically adjacent N blocks
 - A superblock shares log blocks
 - Up to M log blocks per superblock
 - Page mapping within a superblock
 - Hot/cold pages separation
 - The amount of mapping information increased

\[
W = \langle 1, 2, 8, 1, 2, 12, 13, 9 \rangle
\]
Sector Mapping (6)

- **μ-FTL** [ACM EMSOFT 2008]
 - Page mapping
 - Multiple mapping granularities
 - Based on extents
 - Reduce the amount of mapping information
 - Requires more sophisticated index structure
 - μ-Tree is used to store the mapping information
 - Tunable memory footprint
 - Frequently accessed mapping information cached in memory

\[W = <1, 2, 8, 1, 2, 12, 13, 9> \]
Performance (1)

- **Simulation environment**
 - 4GB flash memory
 - Large block SLC NAND (2KB page, 128KB block)
 - FTL schemes
 - Naïve block mapping
 - Replacement block
 - Log block
 - Superblock
 - Workload
 - Trace from PC using NTFS
Extra erase and write operations

- 256 extra blocks
OS Implications (1)

- NAND flash has different characteristics compared to disks
 - No seek time
 - Asymmetric read/write access times
 - No in-place-update
 - Good sequential read/sequential write/random read performance, but bad random write performance
 - Wear-leveling
 - ...
 - Traditional operating systems have been optimized for disks. What should be changed?
OS Implications (2)

- SSD support in Microsoft Windows 7
 - Turn off “defragmentation” for SSDs
 - New “TRIM” command
 - Remove-on-delete
 - Align file system partition with SSD layout
 - Larger block size proposal (4KB)
Beauty and the Beast

- NAND Flash memory is beauty.
 - Small, light-weight, robust, low-cost, low-power non-volatile device

- NAND Flash memory is a beast.
 - Much slower program/erase operations
 - No in-place-update
 - Erase unit > write unit
 - Limited lifetime (10K~100K program/erase cycles)
 - Bad blocks, ...

- Software support for NAND flash memory is very important for performance & reliability.