Warning

- You are now taking the most challenging course in the CSE curriculum
- Lectures will be easy, but projects will not
Overview

- What this course is about
- Who teaches this course
- Why you have to take this course
- What you will learn in this course
- What you will earn in this course
- How to succeed in this course
What this course is about

- Objectives and various forms of operating systems
- Design principles of internal components
 - Process management
 - Memory management
 - Storage management
 - Synchronization tools
Administrative Information

- **Course Code**
 - SWE3004

- **Class Hour**
 - Monday and Wednesday
 - 13:30 PM ~ 14:15 PM

- **Lecture Room**
 - #330110 (located on 1F in Engineering Bldg. II)
Textbook

- **Operating System Concepts**
 - 9th Edition
 - Written by A. Silberschatz, P. B. Galvin and G. Gagne
 - Published by Wiley
 - 2012
References

- Operating Systems: Internals and Design Principles
 - William Stallings
 - Prentice Hall

- Modern Operating Systems
 - Andrew S. Tanenbaum,
 - Prentice Hall
Course Components

- **Class participation**
 - 10% of total credit
 - No lateness is allowed
 - Up to four absences will be tolerated

- **Exams**
 - Mid and final
 - 35% of total credit

- **Programming assignment**
 - Pintos - operating system implementation
 - 4 assignments
 - 55% of total credit
 - TAs will guide you
Course Web Page

- [] http://csl.skku.edu/SWE3004S15
- [] Check the web site regularly
- [] Class material, project information and other useful things will be posted
Ethical Code

- No academic misconduct will be tolerated
 - Zero-tolerance policy
 - One who is found guilty will be kicked out of my class immediately
Lecturer

- Euiseong Seo
 - Associate professor, Software and Computer Eng. Dept.
 - E-Mail: euiseong (at) skku.edu
 - Office: #85564
 - Phone: (031) 299-4953
Teaching Assistants

- 이재민
 - E-Mail: jminlee92 at gmail.com
- 박인영
 - E-Mail: iy6891 at naver.com
- They live in #85533
- E-mail is the preferred way to contact
- Make an appointment before you visit
Why You Have to Take This Course

- To graduate
- To understand computer systems better
- To obtain useful design methodologies and principles for implementation of complex software
- Just for Fun!
- To design a new hardware in OS-compatible ways
- To make a better OS or systems
 - Functionality
 - Performance / Cost
 - Reliability
 - Energy efficiency
Prerequisites

- Introduction to Programming
- Data Structures
- Computer Organization
- Introduction to Algorithms
Lecture Topics

- OS Structure
- Processes and threads
- CPU Scheduling
- Synchronization
- Deadlocks
- Memory management
- Virtual memory
- I/O systems
- Storage
- Filesystems
Keys to Success

- Read textbook exhaustively
- Think, think, think
- Begin your project assignments as early as possible
Pintos Projects

- **What is Pintos?**
 - An instructional operating system based on Nachos
 - Developed by Ben Pfaff @ Stanford University
 - A real, bootable OS for 80x86 architecture
 - Run on a regular IBM-compatible PC or an x86 simulator
 - Written in C with minimal assembly code
Initially, the source tree of Pintos has a skeleton

- Do nothing but testing the functionality

You are supposed to fill in the empty code to provide following features

- Thread scheduling
- User programs
- Virtual memory management
Pintos Schedule

- **Project 0 – Set up your development environment**
 - Lab class: 8PM 3/9
 - Due: 3/18

- **Project 1 – Threads**
 - Lab class: 8PM 3/23
 - Due: 4/8

- **Project 2 – User programs**
 - Lab class: 8PM 4/27
 - Due: 5/18

- **Project 3 – Virtual memory**
 - Lab class: 8PM 5/20
 - Due: 6/10