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Today’s Topics 

¨  What if the physical memory becomes full? 
¤ Page replacement algorithms 

¨  How to manage memory among competing 
processes? 

¨  Advanced virtual memory techniques 
¤ Shared memory 
¤ Copy on write 
¤ Memory-mapped files 



Page Replacement 

¨  When a page fault occurs, the OS loads the 
faulted page from disk into a page frame of 
memory 

¨  At some point, the process has used all of the 
page frames it is allowed to use 

¨  When this happens, the OS must replace a 
page for each page faulted in 
¤  It must evict a page to free up a page frame 

¨  The page replacement algorithm determines 
how this is done 



Page Replacement 

¨  Goal of page replacement algorithm is to reduce  
fault rate by selecting the best victim page to 
remove 

¨  The best page to evict is the one never touched 
again 
¤  As process will never again fault on it 

¨  “Never” is a long time, so picking the page closest to 
“never” is the next best thing 

¨  Belady’s proof 
¤  Evicting the page that won’t be used for the longest period 

of time minimizes the number of page faults 



Belady’s Algorithm 

¨  Optimal page replacement (OPT) 
¤  Replace the page that will not be used for the longest time 

in the future 
¤  Has the lowest fault rate for any page reference stream 
¤  Problem: have to predict the future 
¤  Why is Belady’s useful? – Use it as a yardstick! 

n  Compare other algorithms with the optimal to gauge room for 
improvement 

n  If optimal is not much better, then algorithm is pretty good, 
otherwise algorithm could use some work. 

n  Lower bound depends on workload, but random replacement is 
pretty bad 



FIFO 

¨  First-In First-Out 
¤ Obvious and simple to implement 

n  Maintain a list of pages in order they were paged in 
n  On replacement, evict the one brought in longest time ago 

¤ Why might this be good? 
n  Maybe the one brought in the longest ago is not being used 

¤ Why might this be bad? 
n  Maybe, it’s not the case 
n  We don’t have any information either way 

¤ FIFO suffers from “Belady’s Anomaly” 
n  The fault rate might increase when the algorithm is given more 

memory 



Belady’s Anomaly 

¨  Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 
¨  3 frames: 9 faults 

¨  4 frames: 10 faults 
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LRU 

¨  Least Recently Used 
¨  LRU uses reference information to make a more 

informed replacement decision 
¤  Idea: past experience gives us a guess of future behavior 
¤  On replacement, evict the page that has not been used for 

the longest time in the past 
¤  LRU looks at the past, Belady’s wants to look at future 

¨  Implementation 
¤  Counter implementation: put a timestamp 
¤  Stack implementation: maintain a stack 

¨  Why do we need an approximation? 



Approximating LRU 

¨  Many LRU approximations use the PTE reference (R) bit 
¤  R bit is set whenever the page is referenced (read or written) 

¨  Counter-based approach 
¤  Keep a counter for each page 
¤  At regular intervals, for every page, do: 

n  If R = 0, increment the counter (hasn’t been used) 
n  If R = 1, zero the counter (has been used) 
n  Zero the R bit 

¤  The counter will contain the number of intervals since the last 
reference to the page 

¤  The page with the largest counter is the least recently used 
¨  Some architectures don’t have a reference bit 

¤  Can simulate reference bit using the valid bit to induce faults 



Second Chance (or LRU Clock) 

¨  FIFO with giving a second chance to a recently 
referenced page 

¨  Arrange all of physical page frames in a big circle (clock) 
¨  A clock hand is used to select a good LRU candidate 

¤  Sweep through the pages in circular order like a clock 
¤  If the R bit is off, it hasn’t been used recently and we have a 

victim 
¤  If the R bit is on, turn it off and go to next page 

¨  Arm moves quickly when pages are needed 
¤  Low overhead if we have plenty of memory 
¤  If memory is large, “accuracy” of information degrades 



Second Chance (or LRU Clock) 



Working Set Model 

¨  Working set 
¤ A working set of a process is used to model the 

dynamic locality of its memory usage 
n  i.e., working set = set of pages process currently “needs” 
n  Peter Denning, 1968 

¤ Definition 
n  WS(t,w) = {pages P such that P was referenced in the time 

interval (t, t-w)} 
n  t: time, w: working set window size (measured in page 

references) 
¤ A page is in the working set only if it was referenced in 

the last w references 



Locality In A Memory-Reference Pattern 
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Working Set Size 

¨  The number of pages in the working set 
¤  = The number of pages referenced in the interval (t, t-w) 

¨  The working set size changes with program locality 
¤  During periods of poor locality, more pages are referenced 
¤  Within that period of time, the working set size is larger 

¨  Intuitively, working set must be in memory to prevent heavy faulting 
(thrashing) 

¨  Controlling the degree of multiprogramming based on the working 
set 
¤  Associate parameter “wss” with each process 
¤  If the sum of “wss” exceeds the total number of frames, suspend a process 
¤  Only allow a process to start if its “wss”, when added to all other processes, 

still fits in memory 
¤  Use a local replacement algorithm within each process 



Working Set Page Replacement 

¨  Maintaining the set of pages touched in the last k 
references is expensive 

¨  Approximate the working set as the set of pages used 
during the past time interval 
¤  Measured using the current virtual time: the amount of CPU time 

a process has actually used 
¨  Find a page that is not in the working set and evict it 

¤  Associate the “Time of last use (Tlast)” field in each PTE 
¤  A periodic clock interrupt clears the R bit 
¤  On every page fault, the page table is scanned to look for a 

suitable page to evict 
¤  If R = 1, timestamp the current virtual time (Tlast ← Tcurrent) 
¤  If R = 0 and (Tcurrent – Tlast) > t, evict the page 
¤  Otherwise, remember the page with the greatest age 



Working Set Model 



Not Recently Used 

¨  NRU or enhanced second chance 
¤ Use R (reference) and M (modify) bits 

n  Periodically, (e.g., on each clock interrupt), R is cleared, to 
distinguish pages that have not been referenced recently from 
those that have been 
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Not Recently Used 

¨  Algorithm 
¤  Removes a page at random from the lowest numbered 

nonempty class 
¤  It is better to remove a modified page that has not been 

referenced in at least one clock tick than a clean page that 
is in heavy use 

¤  Used in Macintosh 
¨  Advantages 

¤  Easy to understand 
¤  Moderately efficient to implement 
¤  Gives a performance that, while certainly not optimal, may 

be adequate 



Least Frequently Used 

¨  Counting-based page replacement 
¤  A software counter is associated with each page 
¤  At each clock interrupt, for each page, the R bit is added to 

the counter 
n  The counters denote how often each page has been referenced 

¨  Least frequently used (LFU) 
¤  The page with the smallest count will be replaced 
¤  (cf.) Most frequently used (MFU) page replacement 

n  The page with the largest count will be replaced 
n  Based on the argument that the page with the smallest count was 

probably just brought in and has yet to be used 
¤  It never forgets anything 

n  A page may be heavily used during the initial phase of a process, 
but then is never used again 



Least Frequently Used 

¨  Aging 
¤ The counters are shifted right by 1 bit before the R bit 

is added to the leftmost 



Allocation of Frames 

¨  Problem 
¤  In a multiprogramming system, we need a way to 

allocate physical memory to competing processes 
n  What if a victim page belongs to another process? 
n  How to determine how much memory to give to each process? 

¤ Fixed space algorithms 
n  Each process is given a limit of pages it can use 
n  When it reaches its limit, it replaces from its own pages 
n  Local replacement: some process may do well, others suffer 

¤ Variable space algorithms 
n  Processes’ set of pages grows and shrinks dynamically 
n  Global replacement: one process can ruin it for the rest (Linux) 



Global vs. Local Allocation 

¨  Global replacement – process selects a 
replacement frame from the set of all frames; 
one process can take a frame from another
¤ But then process execution time can vary greatly
¤ But greater throughput so more common

¨  Local replacement – each process selects from 
only its own set of allocated frames
¤ More consistent per-process performance
¤ But possibly underutilized memory



Thrashing 

¨  What OS does if page replacement algorithms fail 
¨  Most of the time is spent by an OS paging data back 

and forth from disk 
¤  No time is spent doing useful work 
¤  The system is overcommitted 
¤  No idea which pages should be in memory to reduce faults 
¤  Could be that there just isn’t enough physical memory for 

all processes 
¨  Possible solutions 

¤  Swapping – write out all pages of a process 
¤  Buy more memory 



Thrashing 



Demand Paging and Thrashing  

¨  Why does demand paging work?
¤ Locality model
¤ Process migrates from one locality to another
¤  Localities may overlap

¨  Why does thrashing occur?  
Σ size of locality > total memory size
¤  Limit effects by using local or priority page 

replacement



Page Fault Frequency 

¨  A variable space algorithm that uses a more ad-
hoc approach 
¤ Monitor the fault rate for each process. 
¤  If the fault rate is above a high threshold, give it more 

memory, so that it faults less (but not always – FIFO, 
Belady’s anomaly) 

¤  If the fault rate is below a low threshold, take away 
memory (again, not always) 

¨  If the PFF increases and no free frames are 
available, we must select some process and 
suspend it 



Page Fault Frequency 



Working Sets and Page Fault Rates 

¨  Direct relationship between working set of a 
process and its page-fault rate 

¨  Working set changes over time 
¨  Peaks and valleys over time 



Advanced VM Functionality 

¨  Virtual memory tricks 
¤ Copy-on-Write 
¤ Shared memory 
¤ Memory-mapped files 



Copy On Write 

¨  Process creation 
¤  requires copying the entire address space of the parent process 

to the child process 
¤  Very slow and inefficient 

¨  Solution 1: Use threads 
¤  Sharing address space is free 

¨  Solution 2: Use vfork() system call 
¤  vfork() creates a process that shares the memory address space 

of its parent 
¤  To prevent the parent from overwriting data needed by the child, 

the parent’s execution is blocked until the child exits or executes 
a new program 

¤  Any change by the child is visible to the parent once it resumes 
¤  Useful when the child immediately executes exec() 



Copy On Write 

¨  Solution 3: Copy On 
Write (COW) 
¤  Instead of copying all 

pages, create shared 
mappings of parent pages 
in child address space 

¤  Shared pages are 
protected as read-only in 
child 
n  Reads happen as usual 
n  Writes generate a protection 

fault, trap to OS, and OS 
copies the page, changes 
page mapping in client page 
table, restarts write 
instruction 
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Shared Memory 

¨  Private virtual address spaces protect applications 
from each other 

¨  But this makes it difficult to share data 
¤  Parents and children in a forking Web server or proxy will 

want to share an in-memory cache without copying 
¤  Read/Write (access to share data) 
¤  Execute (shared libraries) 

¨  We can use shared memory to allow processes to 
share data using direct memory reference 
¤  Both processes see updates to the shared memory 

segment 
¤  How are we going to coordinate access to shared data? 



Shared Memory 

¨  Implementation 
¤ How can we implement shared memory using page 

tables? 
n  Have PTEs in both tables map to the same physical frame 
n  Each PTE can have different protection values 
n  Must update both PTEs when page becomes invalid 

¤ Can map shared memory at same or different virtual 
addresses in each process’ address space 
n  Different: Flexible (no address space conflicts), but pointers 

inside the shared memory segment are invalid 
n  Same: Less flexible, but shared pointers are valid 



Memory-Mapped Files 

¨  Memory-mapped files 
¤ Mapped files enable processes to do file I/O using 

memory references 
n  Instead of open(), read(), write(), close() 

¤ mmap(): bind a file to a virtual memory region 
n  PTEs map virtual addresses to physical frames holding file 

data 
n  <Virtual address base + N> refers to offset N in file 

¤  Initially, all pages in mapped region marked as invalid 
n  OS reads a page from file whenever invalid page is accessed 
n  OS writes a page to file when evicted from physical memory 
n  If page is not dirty, no write needed 



Memory Mapped Files 
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Memory-Mapped Files 

¨  Note: 
¤  File is essentially backing store for that region of the virtual 

address space (instead of using the swap file) 
¤  Virtual address space not backed by “real” files also called 

“anonymous VM” 
¨  Advantages 

¤  Uniform access for files and memory (just use pointers) 
¤  Less copying 
¤  Several processes can map the same file allowing the 

pages in memory to be shared 
¨  Drawbacks 

¤  Process has less control over data movement 
¤  Does not generalize to streamed I/O (pipes, sockets, etc.) 



Shared Memory via Memory-Mapped I/O 
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Summary 

¨  VM mechanisms 
¤  Physical and virtual addressing 
¤  Partitioning, Paging, Segmentation 
¤  Page table management, TLBs, etc. 

¨  VM policies 
¤  Page replacement algorithms 
¤  Memory allocation policies 

¨  VM requires hardware and OS support 
¤  MMU (Memory Management Unit) 
¤  TLB (Translation Lookaside Buffer) 
¤  Page tables, etc. 



Summary 

¨  VM optimizations 
¤ Demand paging (space) 
¤ Managing page tables (space) 
¤ Efficient translation using TLBs (time) 
¤ Page replacement policy (time) 

¨  Advanced functionality 
¤ Sharing memory 
¤ Copy on write 
¤ Mapped files 


