
PAGE REPLACEMENT
Operating Systems 2015 Spring
by Euiseong Seo

Today’s Topics

¨  What if the physical memory becomes full?
¤ Page replacement algorithms

¨  How to manage memory among competing
processes?

¨  Advanced virtual memory techniques
¤ Shared memory
¤ Copy on write
¤ Memory-mapped files

Page Replacement

¨  When a page fault occurs, the OS loads the
faulted page from disk into a page frame of
memory

¨  At some point, the process has used all of the
page frames it is allowed to use

¨  When this happens, the OS must replace a
page for each page faulted in
¤  It must evict a page to free up a page frame

¨  The page replacement algorithm determines
how this is done

Page Replacement

¨  Goal of page replacement algorithm is to reduce
fault rate by selecting the best victim page to
remove

¨  The best page to evict is the one never touched
again
¤  As process will never again fault on it

¨  “Never” is a long time, so picking the page closest to
“never” is the next best thing

¨  Belady’s proof
¤  Evicting the page that won’t be used for the longest period

of time minimizes the number of page faults

Belady’s Algorithm

¨  Optimal page replacement (OPT)
¤  Replace the page that will not be used for the longest time

in the future
¤  Has the lowest fault rate for any page reference stream
¤  Problem: have to predict the future
¤  Why is Belady’s useful? – Use it as a yardstick!

n  Compare other algorithms with the optimal to gauge room for
improvement

n  If optimal is not much better, then algorithm is pretty good,
otherwise algorithm could use some work.

n  Lower bound depends on workload, but random replacement is
pretty bad

FIFO

¨  First-In First-Out
¤ Obvious and simple to implement

n  Maintain a list of pages in order they were paged in
n  On replacement, evict the one brought in longest time ago

¤ Why might this be good?
n  Maybe the one brought in the longest ago is not being used

¤ Why might this be bad?
n  Maybe, it’s not the case
n  We don’t have any information either way

¤ FIFO suffers from “Belady’s Anomaly”
n  The fault rate might increase when the algorithm is given more

memory

Belady’s Anomaly

¨  Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
¨  3 frames: 9 faults

¨  4 frames: 10 faults

1

2

3

4

1

2

5

3

4

1

2

3

4

5

1

2

3

4

5

LRU

¨  Least Recently Used
¨  LRU uses reference information to make a more

informed replacement decision
¤  Idea: past experience gives us a guess of future behavior
¤  On replacement, evict the page that has not been used for

the longest time in the past
¤  LRU looks at the past, Belady’s wants to look at future

¨  Implementation
¤  Counter implementation: put a timestamp
¤  Stack implementation: maintain a stack

¨  Why do we need an approximation?

Approximating LRU

¨  Many LRU approximations use the PTE reference (R) bit
¤  R bit is set whenever the page is referenced (read or written)

¨  Counter-based approach
¤  Keep a counter for each page
¤  At regular intervals, for every page, do:

n  If R = 0, increment the counter (hasn’t been used)
n  If R = 1, zero the counter (has been used)
n  Zero the R bit

¤  The counter will contain the number of intervals since the last
reference to the page

¤  The page with the largest counter is the least recently used
¨  Some architectures don’t have a reference bit

¤  Can simulate reference bit using the valid bit to induce faults

Second Chance (or LRU Clock)

¨  FIFO with giving a second chance to a recently
referenced page

¨  Arrange all of physical page frames in a big circle (clock)
¨  A clock hand is used to select a good LRU candidate

¤  Sweep through the pages in circular order like a clock
¤  If the R bit is off, it hasn’t been used recently and we have a

victim
¤  If the R bit is on, turn it off and go to next page

¨  Arm moves quickly when pages are needed
¤  Low overhead if we have plenty of memory
¤  If memory is large, “accuracy” of information degrades

Second Chance (or LRU Clock)

Working Set Model

¨  Working set
¤ A working set of a process is used to model the

dynamic locality of its memory usage
n  i.e., working set = set of pages process currently “needs”
n  Peter Denning, 1968

¤ Definition
n  WS(t,w) = {pages P such that P was referenced in the time

interval (t, t-w)}
n  t: time, w: working set window size (measured in page

references)
¤ A page is in the working set only if it was referenced in

the last w references

Locality In A Memory-Reference Pattern

18

20

22

24

26

28

30

32

34

p
a

g
e

 n
u

m
b

e
rs

m
e

m
o

ry
 a

d
d

re
ss

execution time

Working Set Size

¨  The number of pages in the working set
¤  = The number of pages referenced in the interval (t, t-w)

¨  The working set size changes with program locality
¤  During periods of poor locality, more pages are referenced
¤  Within that period of time, the working set size is larger

¨  Intuitively, working set must be in memory to prevent heavy faulting
(thrashing)

¨  Controlling the degree of multiprogramming based on the working
set
¤  Associate parameter “wss” with each process
¤  If the sum of “wss” exceeds the total number of frames, suspend a process
¤  Only allow a process to start if its “wss”, when added to all other processes,

still fits in memory
¤  Use a local replacement algorithm within each process

Working Set Page Replacement

¨  Maintaining the set of pages touched in the last k
references is expensive

¨  Approximate the working set as the set of pages used
during the past time interval
¤  Measured using the current virtual time: the amount of CPU time

a process has actually used
¨  Find a page that is not in the working set and evict it

¤  Associate the “Time of last use (Tlast)” field in each PTE
¤  A periodic clock interrupt clears the R bit
¤  On every page fault, the page table is scanned to look for a

suitable page to evict
¤  If R = 1, timestamp the current virtual time (Tlast ← Tcurrent)
¤  If R = 0 and (Tcurrent – Tlast) > t, evict the page
¤  Otherwise, remember the page with the greatest age

Working Set Model

Not Recently Used

¨  NRU or enhanced second chance
¤ Use R (reference) and M (modify) bits

n  Periodically, (e.g., on each clock interrupt), R is cleared, to
distinguish pages that have not been referenced recently from
those that have been

Class	
 1	

R=0,	
 M=1	

Class	
 3	

R=1,	
 M=1	

Class	
 2	

R=1,	
 M=0	

Class	
 0	

R=0,	
 M=0	

Read	

Write	

interrupt	

Read	

Write	

interrupt	

Read	

Write	

interrupt	

Read	

Write	

interrupt	

Paged-­‐in	

Not Recently Used

¨  Algorithm
¤  Removes a page at random from the lowest numbered

nonempty class
¤  It is better to remove a modified page that has not been

referenced in at least one clock tick than a clean page that
is in heavy use

¤  Used in Macintosh
¨  Advantages

¤  Easy to understand
¤  Moderately efficient to implement
¤  Gives a performance that, while certainly not optimal, may

be adequate

Least Frequently Used

¨  Counting-based page replacement
¤  A software counter is associated with each page
¤  At each clock interrupt, for each page, the R bit is added to

the counter
n  The counters denote how often each page has been referenced

¨  Least frequently used (LFU)
¤  The page with the smallest count will be replaced
¤  (cf.) Most frequently used (MFU) page replacement

n  The page with the largest count will be replaced
n  Based on the argument that the page with the smallest count was

probably just brought in and has yet to be used
¤  It never forgets anything

n  A page may be heavily used during the initial phase of a process,
but then is never used again

Least Frequently Used

¨  Aging
¤ The counters are shifted right by 1 bit before the R bit

is added to the leftmost

Allocation of Frames

¨  Problem
¤  In a multiprogramming system, we need a way to

allocate physical memory to competing processes
n  What if a victim page belongs to another process?
n  How to determine how much memory to give to each process?

¤ Fixed space algorithms
n  Each process is given a limit of pages it can use
n  When it reaches its limit, it replaces from its own pages
n  Local replacement: some process may do well, others suffer

¤ Variable space algorithms
n  Processes’ set of pages grows and shrinks dynamically
n  Global replacement: one process can ruin it for the rest (Linux)

Global vs. Local Allocation

¨  Global replacement – process selects a
replacement frame from the set of all frames;
one process can take a frame from another
¤ But then process execution time can vary greatly
¤ But greater throughput so more common

¨  Local replacement – each process selects from
only its own set of allocated frames
¤ More consistent per-process performance
¤ But possibly underutilized memory

Thrashing

¨  What OS does if page replacement algorithms fail
¨  Most of the time is spent by an OS paging data back

and forth from disk
¤  No time is spent doing useful work
¤  The system is overcommitted
¤  No idea which pages should be in memory to reduce faults
¤  Could be that there just isn’t enough physical memory for

all processes
¨  Possible solutions

¤  Swapping – write out all pages of a process
¤  Buy more memory

Thrashing

Demand Paging and Thrashing

¨  Why does demand paging work?
¤ Locality model
¤ Process migrates from one locality to another
¤  Localities may overlap

¨  Why does thrashing occur?  
Σ size of locality > total memory size
¤  Limit effects by using local or priority page

replacement

Page Fault Frequency

¨  A variable space algorithm that uses a more ad-
hoc approach
¤ Monitor the fault rate for each process.
¤  If the fault rate is above a high threshold, give it more

memory, so that it faults less (but not always – FIFO,
Belady’s anomaly)

¤  If the fault rate is below a low threshold, take away
memory (again, not always)

¨  If the PFF increases and no free frames are
available, we must select some process and
suspend it

Page Fault Frequency

Working Sets and Page Fault Rates

¨  Direct relationship between working set of a
process and its page-fault rate

¨  Working set changes over time
¨  Peaks and valleys over time

Advanced VM Functionality

¨  Virtual memory tricks
¤ Copy-on-Write
¤ Shared memory
¤ Memory-mapped files

Copy On Write

¨  Process creation
¤  requires copying the entire address space of the parent process

to the child process
¤  Very slow and inefficient

¨  Solution 1: Use threads
¤  Sharing address space is free

¨  Solution 2: Use vfork() system call
¤  vfork() creates a process that shares the memory address space

of its parent
¤  To prevent the parent from overwriting data needed by the child,

the parent’s execution is blocked until the child exits or executes
a new program

¤  Any change by the child is visible to the parent once it resumes
¤  Useful when the child immediately executes exec()

Copy On Write

¨  Solution 3: Copy On
Write (COW)
¤  Instead of copying all

pages, create shared
mappings of parent pages
in child address space

¤  Shared pages are
protected as read-only in
child
n  Reads happen as usual
n  Writes generate a protection

fault, trap to OS, and OS
copies the page, changes
page mapping in client page
table, restarts write
instruction

Process	

Page	

table	

Physical	

memory	

COW	

COW	

fork	

child	
 process	

copied	

write	

Shared Memory

¨  Private virtual address spaces protect applications
from each other

¨  But this makes it difficult to share data
¤  Parents and children in a forking Web server or proxy will

want to share an in-memory cache without copying
¤  Read/Write (access to share data)
¤  Execute (shared libraries)

¨  We can use shared memory to allow processes to
share data using direct memory reference
¤  Both processes see updates to the shared memory

segment
¤  How are we going to coordinate access to shared data?

Shared Memory

¨  Implementation
¤ How can we implement shared memory using page

tables?
n  Have PTEs in both tables map to the same physical frame
n  Each PTE can have different protection values
n  Must update both PTEs when page becomes invalid

¤ Can map shared memory at same or different virtual
addresses in each process’ address space
n  Different: Flexible (no address space conflicts), but pointers

inside the shared memory segment are invalid
n  Same: Less flexible, but shared pointers are valid

Memory-Mapped Files

¨  Memory-mapped files
¤ Mapped files enable processes to do file I/O using

memory references
n  Instead of open(), read(), write(), close()

¤ mmap(): bind a file to a virtual memory region
n  PTEs map virtual addresses to physical frames holding file

data
n  <Virtual address base + N> refers to offset N in file

¤  Initially, all pages in mapped region marked as invalid
n  OS reads a page from file whenever invalid page is accessed
n  OS writes a page to file when evicted from physical memory
n  If page is not dirty, no write needed

Memory Mapped Files

process A
virtual memory

1

1

1 2 3 4 5 6

2
3

3

4
5

5

4
2

6
6

1
2
3
4
5
6

process B
virtual memory

physical memory

disk file

Memory-Mapped Files

¨  Note:
¤  File is essentially backing store for that region of the virtual

address space (instead of using the swap file)
¤  Virtual address space not backed by “real” files also called

“anonymous VM”
¨  Advantages

¤  Uniform access for files and memory (just use pointers)
¤  Less copying
¤  Several processes can map the same file allowing the

pages in memory to be shared
¨  Drawbacks

¤  Process has less control over data movement
¤  Does not generalize to streamed I/O (pipes, sockets, etc.)

Shared Memory via Memory-Mapped I/O

process1

memory-mapped
file

shared
memory

shared
memory

shared
memory

process2

Summary

¨  VM mechanisms
¤  Physical and virtual addressing
¤  Partitioning, Paging, Segmentation
¤  Page table management, TLBs, etc.

¨  VM policies
¤  Page replacement algorithms
¤  Memory allocation policies

¨  VM requires hardware and OS support
¤  MMU (Memory Management Unit)
¤  TLB (Translation Lookaside Buffer)
¤  Page tables, etc.

Summary

¨  VM optimizations
¤ Demand paging (space)
¤ Managing page tables (space)
¤ Efficient translation using TLBs (time)
¤ Page replacement policy (time)

¨  Advanced functionality
¤ Sharing memory
¤ Copy on write
¤ Mapped files

