Introduction

▪ Schedule
 • 13:30 – 14:45 (Monday), 12:00 – 13:15 (Wednesday)
 • Lecture room #400112, Semiconductor Bldg.
 #85777, Corporate Collaboration Center Bldg.

▪ Course homepage
 • http://csl.skku.edu/SWE3004S17/
 • Lecture slides, announcements, exam scores, projects, …
 • Don’t waste your time in i-Campus
About me

• Jin-Soo Kim (김진수)
 • Professor @ SW & CE & SSE Dept.
 • Computer Systems Laboratory
 • Operating systems, storage systems, embedded systems, distributed systems, …
 • Email: jinsookim@skku.edu
 • URL: http://csl.skku.edu/jinsoo
 • Tel: 031-299-4593
 • Office: Corp. Collaboration Center #85566 (5th floor)
 • Office hours: Monday & Wednesday
 • The best way to contact me is by email
What is an OS?

- Computer systems internals

![Diagram of computer systems components]

- Software
- Architecture
- Hardware
- Application

Operating Systems

System calls

CPU
Mem
I/O Devices
Why do we learn OS?

▪ To graduate?
▪ To make a new hardware up and running
▪ To make a better OS or system
 • Functionality
 • Performance/Cost
 • Reliability
 • Energy efficiency
▪ To design OS-aware hardware
▪ To understand computer systems better
▪ Just for fun!
Where are we now?

<table>
<thead>
<tr>
<th>소프트웨어학과</th>
<th>전공핵심</th>
<th>전공일반</th>
<th>실험실습</th>
<th>교양·기초</th>
</tr>
</thead>
<tbody>
<tr>
<td>1학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td>프로그래밍 기초와실습(C) (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>공학컴퓨터프로그래밍(C++) (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>자료구조개론</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td>알고리즘 개론</td>
<td>소프트웨어 셰미나 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>프로그래밍 언어</td>
<td>소프트웨어 특강1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td>문제해결기법 (CSE-C/L)</td>
<td>소프트웨어 특강2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>오토마타</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td>데이터베이스 개론</td>
<td>컴퓨터 그래픽스개론</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>인공지능 개론</td>
<td>임베디드 소프트웨어 개론</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3학기</td>
<td>디지털 논리회로</td>
<td>멀티코어 컴퓨팅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>시스템 프로그램</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td>컴퓨터 구조개론</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>운영체제</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td>마이크로 프로세서 (ICE-C/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>정보보호 개론</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>확률과 랜덤프로세스</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3학기</td>
<td>컴퓨터 네트워크개론</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>컴퓨터 프로젝트 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td>오픈소스SW 실습 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>논리회로설계 실험 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td>소프트웨어 실습1 (2) (Java)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>소프트웨어 실습2 (2) (Unix)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>소프트웨어 실습3 (2) (Mobile)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3학기</td>
<td>소프트웨어 실습4 (2) (Web)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>소프트웨어 프로젝트 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td>인공지능 프로젝트 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td>컴퓨터 그래픽스 프로젝트 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3학기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1학기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2학기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5학년</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prerequisites

▪ Courses
 • System Programming or equivalents: SWE2001, CSE2003, or SSE2030
 • Unix System Programming Experiment or equivalents: SWE2007, CSE3044, or SSE2033
 • Computer Architecture: SWE3005 or ICE3003

▪ Required skills
 • Fluent C programming
 • Intel x86 architecture & assembly programming
 • Basic knowledge of Unix/Linux systems
 • Reading a large, complex program
Textbook

- Operating Systems: Three Easy Pieces
 - Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
 - Arpaci-Dusseau Books
 - December 2016 (Version 0.92)

 - Available (with several options) at http://ostep.org

 - Read Remzi’s great article at http://from-a-to-remzi.blogspot.com/2014/01/the-case-for-free-online-books-fobs.html
Why Three Pieces?

“… as Operating Systems are about half as hard as Physics.”

Chap. 1
A Dialogue on the Book
Old Textbook

- Operating System Concepts
 - Avi Silberschatz, Peter B. Galvin, and Greg Gagne
 - John Wiley & Sons, Inc.

Reference: General OS

- Modern Operating Systems
 - Andrew S. Tanenbaum
 - Pearson
Reference: Linux

- Linux Kernel Development
 - Robert Love
 - Pearson Education, Inc.
Reference: Windows

- Windows Internals (Part 1 & Part 2)
 - Mark E. Russinovich, David A. Solomon, and Alex Ionescu
 - Microsoft Press
Reference: Solaris

- Solaris Internals
 - Richard McDougall and Jim Mauro
 - Sun Microsystems, 2001
Reference: Computer Systems

- **Computer Systems: A Programmer’s Perspective**
 - Randal E. Bryant and David R. O’Hallaron
 - Pearson Education, Inc.
 - http://csapp.cs.cmu.edu
Course Plan

▪ Lectures
 • General operating system concepts
 • Case study: Linux, xv6

▪ Hands-on projects
 • Using xv6 instructional OS
Lectures: Topics

- Virtualization
 - Processes
 - CPU scheduling
 - Virtual memory

- Concurrency
 - Threads
 - Synchronization

- Persistence
 - Storage
 - File systems
Projects: xv6

▪ A teaching OS developed by MIT
 • Port of the Sixth Edition Unix (v6) in ANSI C
 • Runs on multi-core x86 systems

▪ Why moving on to xv6 (from Pintos)?
 • Code inherited from a real, historical OS!
 • Includes working user-level programs and libraries
 • Easier to install on modern Linux systems
 • Easier to extend
 • Easier to understand modern OSes such as Linux
Project Plan

- We are preparing 4 ~ 5 projects
- These will be individual projects
- You can use up to 5 slip days

Weekly lab session
- A separate class with a TA (mandatory)
- Project announcement
- Q & A
- Hints & helps
- Code review
- Oral tests, …
Grading Policy

- Class attendance: 10%
- Exams: 35%
 - Midterm: 15%
 - Final: 20%
- Projects: 55%
- Subject to change

- TA: Kisik Jeong (정기식)
 - E-mail: kisik.jeong at csl.skku.edu
 - Office: Corp. Collaboration Center #85533
Class Attendance Policy

▪ If you miss any of exams, you will fail this course
▪ Do not be late! You should be present in the lecture room when I take class attendance
▪ You can miss the class up to four times without any penalty
 • For excused absences as well
▪ There will be a (small) bonus for students who attend all the classes (subject to change)
Cheating Policy

▪ What is cheating?
 • Copying another student’s solution (or one from the Internet) and submitting it as your own
 • Allowing another student to copy your solution

▪ What is NOT cheating?
 • Helping others use systems or tools
 • Helping others with high-level design issues
 • Helping others debug their code

▪ Penalty for cheating
 • Severe penalty on the grade (F) and report to dept. chair
 • Ask helps to your TA if you experience any difficulty!
Summary

- Understanding OS is essential for a broad spectrum of computer systems
 - Embedded systems, Cloud computing, Distributed systems, ...

- It will be a (very) tough semester! Use your time wisely

- Please make sure if you’re ready to take this course

- Happy hacking!