Solid State Drives (SSDs)

Jin-Soo Kim (jinsookim@skku.edu)
Computer Systems Laboratory
Sungkyunkwan University
http://csl.skku.edu
Memory Types

- **FLASH**
 - High-density
 - Low-cost
 - High-speed
 - Low-power
 - High reliability

- **EPROM**
 - Non-volatile
 - High-density
 - Ultraviolet light for erasure

- **EEPROM**
 - Non-volatile
 - Lower reliability
 - Higher cost
 - Lowest density
 - Electrically byte-erasable

- **DRAM**
 - High-density
 - Low-cost
 - High-speed
 - High-power

- **ROM**
 - High-density
 - Reliable
 - Low-cost
 - Suitable for high production with stable code

Source: Intel Corporation.
Flash Memory Cell

- Transistor with floating gate
 - The floating gate is insulated all around with an oxide layer
 - Electrons trapped in the floating gate can remain for up to years

http://www.thenandflash.com
Flash Memory Characteristics

- **Erase-before-write**
 - Read
 - Write or Program: 1 → 0
 - Erase: 0 → 1

- **Bulk erase**
 - Program unit:
 - NOR: byte or word
 - NAND: page
 - Erase unit: block
Logical View of NAND Flash

- A collection of **blocks**
- Each block has a number of **pages**
- The size of a block or a page depends on the technology (but, it’s getting larger)
NAND Flash Types

- **SLC NAND**
 - Single Level Cell
 - 1 bit/cell
- **MLC NAND**
 - Multi Level Cell (misnomer)
 - 2 bits/cell
- **TLC NAND**
 - Triple Level Cell
 - 3 bits/cell
- **3D NAND**

Source: Micron Technology, Inc.
NAND Applications

- Universal Flash Drives (UFDs)
- Flash cards
 - CompactFlash, MMC, SD, Memory stick, …
- Smartphones
 - eMMC (Embedded MMC)
 - UFS (Universal Flash Storage)
- SSDs (Solid State Drives)
- Other embedded devices
 - MP3 players, Digital TVs, Set-top boxes, Car navigators, …
Commercial SSDs

http://www.enuri.com (As of May 24, 2017)
Anatomy of an SSD

- Samsung 850 Evo

HDDs vs. SSDs

<table>
<thead>
<tr>
<th>Feature</th>
<th>SSD (Samsung)</th>
<th>HDD (Seagate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>MZ-75E2T0B (850 Evo)</td>
<td>ST2000LM003 (SpinPoint M9T)</td>
</tr>
<tr>
<td>Capacity</td>
<td>2TB (128Gb 32-Layer 3D V-NAND TLC x 16 die/channel x 8 channels)</td>
<td>2TB (3 Discs, 6 Heads, 5400 RPM)</td>
</tr>
<tr>
<td>Form factor</td>
<td>2.5”, 66g</td>
<td>2.5”, 130g</td>
</tr>
<tr>
<td>DRAM</td>
<td>2 GB</td>
<td>32 MB</td>
</tr>
<tr>
<td>Host interface</td>
<td>SATA-3 (6.0 Gbps)</td>
<td>SATA-3 (6.0 Gbps)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>3.7, 4.7 W / 0.5 W / 0.05 W</td>
<td>2.3 W / 0.7 W / 0.18 W</td>
</tr>
<tr>
<td>Performance 850 Evo</td>
<td>Sequential read: 544 MB/s</td>
<td>Sequential read: 124 MB/s</td>
</tr>
<tr>
<td></td>
<td>Sequential write: 520 MB/s</td>
<td>Sequential write: 124 MB/s</td>
</tr>
<tr>
<td></td>
<td>Random read: 97,687 IOPS</td>
<td>Random read: 56 IOPS</td>
</tr>
<tr>
<td></td>
<td>Random write: 89,049 IOPS</td>
<td>Random write: 98 IOPS</td>
</tr>
<tr>
<td></td>
<td>Random read: 11,335 IOPS (QD1)</td>
<td>Power-on to ready: 3.5 sec</td>
</tr>
<tr>
<td></td>
<td>Random write: 38,433 IOPS (QD1)</td>
<td>Average seek: 12/14 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average latency: 5.6 ms</td>
</tr>
<tr>
<td>Price</td>
<td>870,850 won (435won/GB)</td>
<td>139,460 won (70won/GB)</td>
</tr>
</tbody>
</table>

2 http://www.storagereview.com/samsung_spinpoint_m9t_hard_drive_review
State of the Art

- World’s first 2.5” SAS 16TB SSD @ FMS 2015
NAND Constraints

- **No in-place update**
 - Require sector remapping (or address translation)

- **Bit errors**
 - Require the use of error correction codes (ECCs)

- **Bad blocks**
 - Factory-marked and run-time bad blocks
 - Require bad block remapping

- **Limited program/erase cycles**
 - < 100K for SLCs, < 3K for MLCs, < 1K for TLCs
 - Require wear-leveling
Flash Translation Layer (FTL)

- A software layer to make NAND flash fully emulate traditional block devices (e.g. disks)

Source: Zeen Info. Tech.
SSD Internals
Address Mapping

- Required since flash pages cannot be overwritten

![Diagram showing address mapping]

LBA address space
(As seen by the host)

write

Mapping table

NAND flash

old data

new data
Example: Page Mapping

- Flash configuration
 - Page size: 4KB
 - # of pages / block = 4

- Current state
 - Written to page 0, 1, 2, 8, 4, 5

- Reading page 5

 Logical page #5: 0000000101

```
  Page Map Table
  0  1  2  3  4  5  6  7  8  9  10 11
  0  1  2  4  4  3

  Data Block
  PBN: 0
  0  1  2  8
  PBN: 1
  4  5
  PBN: 2
  8  9
  PBN: 3
  12 13 14 15
```

PPN
0 1 2 3 4 5 6 7 8 9 10 11
Example: Page Mapping

- **Flash configuration**
 - Page size: 4KB
 - # of pages / block = 4

- **Current state**
 - Written to page 0, 1, 2, 8, 4, 5

- **New requests (in order)**
 - Write to page 9
 - Write to page 3
 - Write to page 5
Example: Page Mapping

- Flash configuration
 - Page size: 4KB
 - # of pages / block = 4

- Current state
 - Written to page 0, 1, 2, 8, 4, 5

- New requests (in order)
 - Write to page 9
 - Write to page 3
 - Write to page 5
Example: Page Mapping

- **Flash configuration**
 - Page size: 4KB
 - # of pages / block = 4

- **Current state**
 - Written to page 0, 1, 2, 8, 4, 5

- **New requests (in order)**
 - Write to page 9
 - Write to page 3
 - Write to page 5
Example: Page Mapping

- Flash configuration
 - Page size: 4KB
 - # of pages / block = 4

- Current state
 - Written to page 0, 1, 2, 8, 4, 5

- New requests (in order)
 - Write to page 9
 - Write to page 3
 - Write to page 5
Garbage Collection

- Garbage collection (GC)
 - Eventually, FTL will run out of blocks to write to
 - GC must be performed to reclaim free space
 - Actual GC procedure depends on the mapping scheme

- GC in page-mapping FTL
 - Select victim block(s)
 - Copy all valid pages of victim block(s) to free block
 - Erase victim block(s)
 - Note: At least one free block should be reserved for GC
Example: GC in Page Mapping

- **Current state**
 - Written to page 0, 1, 2, 8, 4, 5
 - Written to page 9, 3, 5

- **New requests (in order)**
 - Write to page 8
 - Write to page 9
 - Write to page 3
 - Write to page 1
 - Write to page 4
Example: GC in Page Mapping

- **Current state**
 - Written to page 0, 1, 2, 8, 4, 5
 - Written to page 9, 3, 5

- **New requests (in order)**
 - Write to page 8
 - Write to page 9
 - Write to page 3
 - Write to page 1
 - Write to page 4
Example: GC in Page Mapping

- **Current state**
 - Written to page 0, 1, 2, 8, 4, 5
 - Written to page 9, 3, 5

- **New requests (in order)**
 - Write to page 8
 - **Write to page 9**
 - Write to page 3
 - Write to page 1
 - Write to page 4
Example: GC in Page Mapping

- **Current state**
 - Written to page 0, 1, 2, 8, 4, 5
 - Written to page 9, 3, 5

- **New requests (in order)**
 - Write to page 8
 - Write to page 9
 - Write to page 3
 - Write to page 1
 - Write to page 4
Example: GC in Page Mapping

- **Current state**
 - Written to page 0, 1, 2, 8, 4, 5
 - Written to page 9, 3, 5

- **New requests (in order)**
 - Write to page 8
 - Write to page 9
 - Write to page 3
 - Write to page 1
 - Write to page 4
Example: GC in Page Mapping

- **Current state**
 - Written to page 0, 1, 2, 8, 4, 5
 - Written to page 9, 3, 5

- **New requests (in order)**
 - Write to page 8
 - Write to page 9
 - Write to page 3
 - Write to page 1
 - Write to page 4
OS Implications

- NAND flash has different characteristics compared to disks
 - No seek time
 - Asymmetric read/write access times
 - No in-place-update
 - Good sequential read/write and random read performance, but bad random write performance
 - Wear-leveling
 - …
 - Traditional operating systems have been optimized for disks. What should be changed?
SSD Support in OS

- Turn off “defragmentation” for SSDs
- New “TRIM” command
 - Remove-on-delete
- Simpler I/O scheduler
- Align file system partition with SSD layout
- Flash-aware file systems (e.g. F2FS in Linux)
- Larger block size (4KB)
- New “multi-stream” interface
Beauty and the Beast

- NAND Flash memory is a beauty
 - Small, light-weight, robust, low-cost, low-power non-volatile device

- NAND Flash memory is a beast
 - Much slower program/erase operations
 - No in-place-update
 - Erase unit > write unit
 - Limited lifetime
 - Bit errors, bad blocks, …

- Software support is essential for performance and reliability!
Beyond Flash

- Resistance-based memory technologies

<table>
<thead>
<tr>
<th></th>
<th>DRAM</th>
<th>NAND</th>
<th>MRAM</th>
<th>PRAM</th>
<th>ReRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell size</td>
<td>~8F²</td>
<td>~5F² (SLC)</td>
<td>~8F²</td>
<td>~4F²</td>
<td>~8F² (transistor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1 F² (stack)</td>
</tr>
<tr>
<td>Density</td>
<td>xGigabit</td>
<td>xxGigabit</td>
<td>xxMegabit</td>
<td>xGigabit</td>
<td>--</td>
</tr>
<tr>
<td>Latency</td>
<td>~50 ns</td>
<td>20 to ~200 μs</td>
<td>~50 ns</td>
<td>~200 ns</td>
<td>~50 ns to ~1 μs</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>~1 GBps</td>
<td>~100 MBps</td>
<td>~1 GBps</td>
<td>~100 MB/s</td>
<td>~100 MBps</td>
</tr>
<tr>
<td>Volatility</td>
<td>Volatile</td>
<td>Nonvolatile</td>
<td>Nonvolatile</td>
<td>Nonvolatile</td>
<td>Nonvolatile</td>
</tr>
<tr>
<td>Endurance</td>
<td>>10¹⁵</td>
<td>>10⁵</td>
<td>>10¹⁵</td>
<td>>10⁶ to 10⁻¹²</td>
<td>>10⁵</td>
</tr>
<tr>
<td>Retention</td>
<td>>64 ms</td>
<td>>10 years</td>
<td>>10 years</td>
<td>>10 years</td>
<td>>10 years</td>
</tr>
<tr>
<td>Application</td>
<td>Working memory</td>
<td>Data storage memory</td>
<td>Working nonvolatile RAM</td>
<td>Code memory and buffer memory</td>
<td>Data storage memory</td>
</tr>
</tbody>
</table>