Project Plan

• 5 projects
 0. Install xv6
 1. System call
 2. Scheduling
 3. Memory
 4. Virtual Memory
 5. Concurrency

• Individual projects
Page Table Hardware in Xv6

Figure 2-1. x86 page table hardware.
Formats of Paging Entries in Intel x86

![Table and Diagram](image.png)

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
Control Registers in Intel x86

Figure 2-7. Control Registers

Intel® 64 and IA-32 Architectures Software Developer’s Manual V3
Page Fault Exception in Intel x86

• Conditions
 1. There is no translation for the linear address
 2. There is a translation for the linear address, but its access rights do not permit the access

• CR2 stores the linear address that caused a page fault

• Processor triggers interrupt 14 (page fault)
Page Fault Error Code in Intel x86

| P | 0: The fault was caused by a non-present page.
 | 1: The fault was caused by a page-level protection violation. |
| W/R | 0: The access causing the fault was a read.
 | 1: The access causing the fault was a write. |
| U/S | 0: A supervisor-mode access caused the fault.
 | 1: A user-mode access caused the fault. |
| RSVD | 0: The fault was not caused by reserved bit violation.
 | 1: The fault was caused by a reserved bit set to 1 in some paging-structure entry. |
| I/D | 0: The fault was not caused by an instruction fetch.
 | 1: The fault was caused by an instruction fetch. |
| PK | 0: The fault was not caused by protection keys.
 | 1: There was a protection-key violation. |
| SGX | 0: The fault is not related to SGX.
 | 1: The fault resulted from violation of SGX-specific access-control requirements. |

Figure 4-12. Page-Fault Error Code

Intel® 64 and IA-32 Architectures Software Developer’s Manual V3

2017-05-02
Exception & Interrupt Handling in Xv6

• Follows Intel x86 architecture

• Procedures
 1. Assign certain interrupt to interrupt descriptor table (IDT)
 2. All interrupts jump to alltraps() and build trap frame
 3. Handle each interrupt depending on its trap number
Copy-on-Write

• When a process forks
 – Create shared mappings to the same page frames in physical page
 – Shared pages are protected as read-only

• When data is written to shared pages
 – Protection fault is generated
 – OS allocates new space in physical memory and directs the write to it

• Reference counter for physical pages is needed

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html
PA #4 - Copy-on-Write

• Implement copy-on-write on xv6

• Implementation details
 – Setting up page-fault handler
 – Implementing page-fault handler
 – Modify copyuvm() in vm.c from copy version to duplicate version
 – Managing pages using reference counter

• References
 – Reading cr2 register & loading cr3 register are implemented in x86.h
 • rcr2(), lcr3()
 – Xv6 commentary
PA #4 Template Code

• git clone https://github.com/jinsoox/xv6-skku.git -b pa4
• Modifications
 – freemem() system call
 • Return the number of free pages in kmem.freelist
Project Submission Procedure

• http://sys.skku.edu
 – Submit a tarball file made from “make tarball”

• Due date
 – 2017-05-14 23:59

• Since 6th submission, -5\% penalty of the project score
 – Up to 5 submissions are free to accept

• Every one day delay, -25\% penalty of the project score
 – You can use up to 5 slip days