Overview

- What this course is about
- Who teaches this course
- Why you have to take this course
- What you will learn in this course
- What you will earn in this course
- How to succeed in this course
What This Course is About

- **Computer Architecture**
 - Internals of components
 - Relationship between components
 - Interface to upper layers

- **Components?**
 - Processor
 - Memory
 - Storage Device
 - I/O
World’s Tallest Lego Tower

- **Legoland Windsor, UK**
 - May 2-5, 2008
 - To celebrate 50th anniversary of the Lego bricks
 - 100 ft (~ 30.5m)
 - 500,000 bricks
Intel Xeon – 2.6B Transistors
Administrative Information

- **Course Code**
 - SWE 3005-42

- **Class Hour**
 - Tue 09:00 AM – 10:15 AM
 - Thu 10:30 AM ~ 11:45 AM

- **Lecture Room**
 - #26308
Textbook

- Computer Organization and Design – The Hardware/Software Interface, 5th Ed.
 - D. A. Patterson and J. L. Hennessy
 - Morgan Kaufmann, 2013
Reference

- Computer Architecture: A Quantitative Approach
 - From the same authors of our text book
Course Components

- **Lectures**
 - Concepts
 - Backgrounds

- **Reading Assignment**
 - Technical details
 - Supplementary concepts

- **Programming Assignment**
 - Assembly programming practice

- **Exams**
 - Four exams
 - All of them are equally important
Course Web Page

- http://csi.skku.edu/course/swe3005-42f19/
- Check the web site regularly
- Class material, project information and other useful things will be posted there
Grading

- Proportion of Activities
 - Participation 10%
 - Programming assignment 10%
 - Exams 80%
 - There are four exams. One for each quarter.
 - If you miss two of them, you will fail

- Up to four absences will be tolerated
Ethical Code

- No academic misconduct will be tolerated
 - Zero-tolerance policy
 - One who is found guilty will be kicked out of my class immediately
Lecturer

- Euiseong Seo
 - E-Mail: euiseong (at) skku.edu
 - Office: #85564
 - Phone: (031) 299-4953
Why You Have to Take This

- To become a good software engineer
- To become a good hardware engineer
What You Will Learn

- Components in a Computer System
 - Roles and internals of them
 - Relationship between them
- Code optimization techniques
What You Will Learn

- Overview
- ARM instruction set architecture
- Arithmetic for computers
- Processor – data path and control
- Pipelining and hazards
- Cache memory
- Virtual memory
- Storage and I/O
- Multiprocessors
What You Will Learn

Software

Application

Operating Systems

Architecture

Hardware

CPU
Mem
I/O Devices
What You Will Learn

System Programming

Computer Architecture

Application programs
Data structures & algorithms
Programming languages & compilers
Operating System
Architecture
Microarchitecture
Hardware Description Languages
Digital logic
VLSI layout
Processing, Fabrication
Chemistry, Physics

What You Will Learn

System Programming

Computer Architecture

Application programs
Data structures & algorithms
Programming languages & compilers
Operating System
Architecture
Microarchitecture
Hardware Description Languages
Digital logic
VLSI layout
Processing, Fabrication
Chemistry, Physics
What You Will Earn

- You will get familiar with computer architecture
 - A strong background for building extreme performance software
 - A good starting point for designing new hardware

- You will be prepared for later “systems” classes in CSE
 - Compilers, Operating Systems, Embedded Systems etc.
Keys to Success

- Read and understand textbook thoroughly
- Memorize everything
- Invest as many hours as possible